Mostrar el registro sencillo

dc.contributor.authorSancho Lucio, Sergio Miguel 
dc.contributor.authorPontón Lobete, María Isabel 
dc.contributor.authorSuárez Rodríguez, Almudena 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-03T15:37:48Z
dc.date.available2025-02-03T15:37:48Z
dc.date.issued2025-01
dc.identifier.issn0018-9480
dc.identifier.issn1557-9670
dc.identifier.otherPID2020-116569RB-C31es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35323
dc.description.abstractActive transponders based on super-regenerative oscillators (SROs) have the advantages of a high gain, low consumption, and a compact implementation. They rely on a switched oscillator excited by a low amplitude frequency modulated continuous-wave (FMCW) signal, which provides an approximately phase-coherent response. Due to the complexity of their operation mode, involving the start-up transient and a time-varying phase shift, their realistic modeling is demanding. Here, we present an in-depth semianalytical investigation of an SRO transponder excited by a frequency-stepped signal, which includes, for the first time to our knowledge, a thorough analysis of the noise perturbations. The SRO is analyzed with a 2-D envelope-domain formulation, derived from a current function extracted from harmonic balance. As will be shown, the SRO response to the incoming signal can be predicted with two nonlinear functions, corresponding to the amplitude and phase, obtained in a single oscillation interval. We will derive an Ornstein?Uhlenbeck system from which the variance of the SRO amplitude and phase will be determined through a detailed analytical approach. Like the SRO response, the noise behavior can be predicted with functions extracted from a single oscillation pulse, which will relate the noise effects to the unperturbed amplitude and phase at the various oscillation stages. The complete investigation provides insight into the effect of nonlinearity and noise on the detected baseband signal and the estimated distance. It will be applied to an SRO at 2.7 GHz, which has been manufactured and measured.es_ES
dc.description.sponsorshipThis work was supported by Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) under Grant PID2020-116569RB-C31es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Transactions on Microwave Theory and Techniques, 2025, 73(1), 45-58es_ES
dc.sourceIEEE MTT-S International Microwave Symposium (IMS), Washington, DC, 2024es_ES
dc.subject.otherActive transponderes_ES
dc.subject.otherEnvelope transientes_ES
dc.subject.otherSuperregenerative oscillator (SRO)es_ES
dc.titleAnalysis and modeling of super-regenerative oscillators with FSCW signalses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://doi.org/10.1109/TMTT.2024.3470247es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116569RB-C31/ES/ANALISIS Y DISEÑO DE NUEVAS TOPOLOGIAS DE OSCILADORES PARA SISTEMAS RADAR Y DE SENSORES DE BAJO COSTO /es_ES
dc.identifier.DOI10.1109/TMTT.2024.3470247
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International