Mostrar el registro sencillo

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorMateos Alberdi, Mariano 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-03T15:07:23Z
dc.date.available2025-02-03T15:07:23Z
dc.date.issued2011-10-01
dc.identifier.issn0324-8569
dc.identifier.issn2720-4278
dc.identifier.otherMTM2008-04206es_ES
dc.identifier.otherCSD2006-00032es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35314
dc.description.abstractIn this paper we collect some results about boundary Dirichlet control problems governed by linear partial differential equations. Some differences are found between problems posed on polygonal domains or smooth domains. In polygonal domains some difficulties arise in the corners, where the optimal control is forced to take a value which is independent of the data of the problem. The use of some Sobolev norm of the control in the cost functional, as suggested in the specialized literature as an alternative to the L 2 norm, allows to avoid this strange behavior. Here, we propose a new method to avoid this undesirable behavior of the optimal control, consisting in considering a discrete perturbation of the cost functional by using a finite number of controls concentrated around the corners. In curved domains, the numerical approximation of the problem requires the approximation of the domain [omega] typically by a polygonal domain [omega]h, this introduces some difficulties in comparing the continuous and the discrete controls because of their definition on different domains [omega] and [gamma]h, respectively. We complete the existing recent analysis of these problems by proving the error estimates for a full discretization of the control problem. Finally, some numerical results are provided to compare the different alternatives and to confirm the theoretical predictions.es_ES
dc.description.sponsorshipThe authors were partially supported by the Spanish Ministerio de Ciencia e Innovación under projects MTM2008-04206 and “Ingenio Mathematica (i-MATH)” CSD2006-00032 (Consolider Ingenio 2010).es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherDe Gruyter Brilles_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceControl and Cybernetics, 2011, 40(4), 931-955es_ES
dc.subject.otherOptimal controles_ES
dc.subject.otherBoundary controles_ES
dc.subject.otherDirichlet controles_ES
dc.titleDirichlet control problems in smooth and nonsmooth convex plain domainses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//MTM2008-04206/ES/CONTROL DE ECUACIONES EN DERIVADAS PARCIALES Y APLICACIONES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//MTM2008-04206/ES/CONTROL DE ECUACIONES EN DERIVADAS PARCIALES Y APLICACIONES/es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International