dc.contributor.author | Casas Rentería, Eduardo | |
dc.contributor.author | Kunisch, Karl | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-02-03T15:06:43Z | |
dc.date.available | 2025-02-03T15:06:43Z | |
dc.date.issued | 2024-03 | |
dc.identifier.issn | 0324-8569 | |
dc.identifier.issn | 2720-4278 | |
dc.identifier.other | PID2020-114837GB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/35313 | |
dc.description.abstract | In this paper, infinite horizon optimal control prob lems subject to semilinear parabolic equations are investigated. A finite number of only time-dependent controls intervening at dis joint positions in the space domain are considered. The controls are subject to integral constraints and a term is included in the cost functional that promotes control sparsity. The existence of optimal controls is proven, first and second order optimality conditions are derived, and the approximation by finite horizon control problems is addressed. | es_ES |
dc.description.sponsorship | The first author was partially supported by MCIN/ AEI/10.13039/501100011033/ under research project PID2020-114837GB-I00. | es_ES |
dc.format.extent | 32 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | De Gruyter Brill | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Control and Cybernetics, 2024, 53(1), 11-42 | es_ES |
dc.subject.other | Semilinear parabolic equation | es_ES |
dc.subject.other | Sparse optimal control | es_ES |
dc.subject.other | Infinite horizon problems | es_ES |
dc.subject.other | First and second order optimality conditions | es_ES |
dc.title | Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114837GB-I00/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. ESTUDIO TEORICO, ANALISIS NUMERICO Y APLICACIONES/ | es_ES |
dc.identifier.DOI | 10.2478/candc-2024-0003 | |
dc.type.version | publishedVersion | es_ES |