Mostrar el registro sencillo

dc.contributor.authorPérez Díaz, Beatriz
dc.contributor.authorCagigal Gil, Laura 
dc.contributor.authorCastanedo Bárcena, Sonia 
dc.contributor.authorFernández Quiruelas, Valvanuz 
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-31T12:56:09Z
dc.date.issued2025-04-15
dc.identifier.issn0378-3839
dc.identifier.issn1872-7379
dc.identifier.otherPID2022-141181OB-I00es_ES
dc.identifier.otherPID2023-150689OB-I00es_ES
dc.identifier.otherPLEC2022-009362es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35292
dc.description.abstractStorm surge is one of the main components of sea level beyond coastal flooding induced by intense storm events such as tropical cyclones (TCs). This component can be estimated using dynamic numerical simulations that consider both the inverse barometer effect induced by pressure gradients and wind setup. However, the dynamic approach can be computationally demanding and time-consuming, particularly for being included in early warning systems of resource-constrained communities. In this study, we introduce as an alternative, a novel additive hybrid model known as GreenSurge. This model relies on the generation of a library of sea-level responses to unitary wind sources from any direction, along with the assumption of a linear dynamics framework for the summation of the spatial and temporal sea-level responses, facilitating the efficient reconstruction of storm surge at regional-to-local scales. To showcase the capabilities of GreenSurge, we have implemented the method in the Pacific Island of Tongatapu (Tonga) to predict the storm surge induced by several TCs and compare its capabilities against dynamic numerical simulations and available tide gauge data. Given its similar accuracy (errors less than 10% of the maximum storm surge value) and higher computational efficiency when compared with dynamic hydrodynamic models, GreenSurge has proven to be a great alternative for reconstructing historical time series, feeding coastal flooding models, or even analysing climate change scenarios.es_ES
dc.description.sponsorshipThis research would not have been possible without funding from: the Spanish Ministry of Science, Innovation and Universities, project HyBay (PID2022-141181OB-I00) and project EasyFlood (PID2023-150689OB-I00); the Government of Cantabria and the European Union NextGenerationEU/PRTR under projects BahiaLab (C17.IO1-Plan Complementario de Ciencias Marinas), Perfect-Storm (2023/TCN/003), CE4Wind (CPP2022-010118) and MyFlood (PLEC2022-009362); the U.S. Department of Defense as part of the Multidisciplinary University Research Initiative (MURI) program and the Environmental Security Technology Certification Program (ESTCP). LC acknowledges the funding from the Juan de la Cierva Formación FJC2021-046933-I/MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR. The authors would like to thank the South Pacific Community (SPC) and the Government of Australia and Tonga for providing topo-bathymetry data and tide gauge data.es_ES
dc.format.extent35 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCoastal Engineering, 2025, 197, 104691es_ES
dc.titleGreenSurge: An efficient additive model for predicting storm surge induced by tropical cycloneses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.coastaleng.2024.104691es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-141181OB-I00/ES/UNA HERRAMIENTA EFICIENTE HIBRIDA PARA VALORAR EL EFECTO DE MEDIDAS DE ADAPTACION AL CAMBIO CLIMATICO EN ESTUARIOS Y BAHIA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-150689OB-I00/ES/SIMULACION AUTOMATICA DE SISTEMAS DE INUNDACION COSTERA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PLEC2022-009362/ES/SISTEMA MULTIESCALA HÍBRIDO PARA LA PREDICCIÓN EN EL CORTO PLAZO Y LAS PROYECCIONES DE CAMBIO CLIMÁTICO DE LA INUNDACIÓN DEBIDA A FENÓMENOS COMPUESTOS (MyFlood)/es_ES
dc.identifier.DOI10.1016/j.coastaleng.2024.104691
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2027-04-15
dc.date.embargoEndDate2027-04-15


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license