Mostrar el registro sencillo

dc.contributor.authorVega Ruiz, Alfonso de la 
dc.contributor.authorSánchez Barreiro, Pablo 
dc.contributor.authorKolovos, Dimitrios S.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-31T12:54:29Z
dc.date.available2025-01-31T12:54:29Z
dc.date.issued2018
dc.identifier.isbn978-1-5386-5841-3
dc.identifier.otherTIN2014-56158-C4-2-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/35291
dc.description.abstractData mining techniques have been successfully applied to software quality analysis and assurance, including quality of modeling artefacts. Before such techniques can be used, though, data under analysis commonly need to be formatted into two-dimensional tables. This constraint is imposed by data mining algorithms, which typically require a collection of records as input for their computations. The process of extracting data from the corresponding sources and formatting them properly can become error-prone and cumbersome. In the case of models, this process is mostly carried out through scripts written in a model management language, such as EOL or ATL. To improve this situation, we present Pinset, a domain-specific language devised for the extraction of tabular datasets from software models. Pinset offers a tailored syntax and built-in facilities for common activities in dataset extraction. For evaluation, Pinset has been used on UML class diagrams to calculate metrics that can be employed as input for several fault-prediction algorithms. The use of Pinset for this calculations led to more compact and highlevel specifications when compared to equivalent scripts written in generic model management languages.es_ES
dc.description.sponsorshipThis work has been partially funded by the doctoral program from the University of Cantabria, and by the Spanish Government under grant TIN2014-56158-C4-2-P (M2C2).es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Computer Societyes_ES
dc.rightsAlojado según Resolución CNEAI 5/12/23 (ANECA) © 2018 IEEE Computer Societyes_ES
dc.sourceQUATIC 2018: International Conference on the Quality of Information and Communications Technology: proceedings, Coimbra, Portugal, 4-7 september 2018, Piscataway, IEEE Computer Society, 2018es_ES
dc.subject.otherData Mininges_ES
dc.subject.otherSoftware Qualityes_ES
dc.subject.otherModel-Driven Engineeringes_ES
dc.subject.otherDomain-Specific Languageses_ES
dc.titlePinset: a DSL for extracting datasets from models for data mining-based quality analysises_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsclosedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2014-56158-C4-2-P/ES/SISTEMAS CIBER-FISICOS DE CRITICIDAD MIXTA SOBRE PLATAFORMAS MULTINUCLEO/es_ES
dc.identifier.DOI10.1109/QUATIC.2018.00021
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo