Lavoisier: a DSL for increasing the level of abstraction of data selection and formatting in data mining
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Vega Ruiz, Alfonso de la



Fecha
2020-10Derechos
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Journal of Computer Languages, 2020, 60, 100987
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Data selection
Data formatting
Domain-specific languages
Data mining
Resumen/Abstract
Input data of a data mining algorithm must conform to a very specific tabular format. Data scientists arrange data into that format by creating long and complex scripts, where different low-level operations are performed, and which can be a time-consuming and error-prone process. To alleviate this situation, we present Lavoisier, a declarative language for data selection and formatting in a data mining context. Using Lavoisier, script size for data preparation can be reduced by ⁓40% on average, and by up to 80% in some cases. Additionally, accidental complexity present in state-of-the-art technologies is considerably
mitigated.
Colecciones a las que pertenece
- D30 Artículos [97]
- D30 Proyectos de Investigación [116]