dc.contributor.author | Crespo Ruiz, Luis | |
dc.contributor.author | Santos, Francisco | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-01-29T13:47:31Z | |
dc.date.available | 2025-01-29T13:47:31Z | |
dc.date.issued | 2024-06 | |
dc.identifier.issn | 2470-6566 | |
dc.identifier.other | PID2019-106188GB-I00 | es_ES |
dc.identifier.other | PID2022-137283NB-C21 | es_ES |
dc.identifier.other | PRE2020-092702 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/35236 | |
dc.description.abstract | The k-associahedron AsSk(n) is the simplicial complex of (fc + l)-crossing-free subgraphs of the complete graph with vertices on a circle. Its facets are called fc-triangulations. We explore the connection of Assk(n) with the Pfaffian variety Vf'k(n) of antisymmetric matrices of rank < 2k. First, we characterize the Grobner cone Grobk(n) for which the initial ideal of I(Vfk(n)) equals the Stanley-Reisner ideal of Assk(n) (that is, the monomial ideal generated by (k + l)-crossings). We then look at the tropicalization oiVfk{n) and show that Assk(n) embeds naturally as the intersection of trop(Vfk{n)) and Grobk(n), and that it is contained in the totally positive part trop+ (Pfk(n)) of it. We show that for fc = 1 and for each triangulation T of the n-gon, the projection of this embedding of Assk(n) to the n - 3 coordinates corresponding to diagonals in T gives a complete polytopal fan, realizing the associahedron. This fan is linearly isomorphic to the g-vector fan of the cluster algebra of type A. shown to be polytopal by Hohlweg, Pilaud, and Stella in 2018. | es_ES |
dc.description.sponsorship | Supported by grants PID2019-106188GB-I00, PID2022-137283NB-C21, and PRE2020-092702 funded by MCIN/AEI/10.13039/501100011033, and by project CLaPPo (21.SI03.64658) of Universidad de Cantabria and
Banco Santander. | es_ES |
dc.format.extent | 31 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Society for Industrial and Applied Mathematics | es_ES |
dc.rights | © 2024 Society for Industrial and Applied Mathematics | es_ES |
dc.source | SIAM Journal on Applied Algebra and Geometry, 2024, 8(2), 302-332 | es_ES |
dc.subject.other | Multitriangulations | es_ES |
dc.subject.other | Tropical geometry | es_ES |
dc.subject.other | Pfaffians | es_ES |
dc.subject.other | Associahedron | es_ES |
dc.title | Multitriangulations and tropical Pfaffians | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1137/22M152750 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106188GB-I00/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137283NB-C21/ES/COMBINATORIA GEOMETRICA Y SUS APLICACIONES AL ALGEBRA/ | es_ES |
dc.identifier.DOI | 10.1137/22M1527507 | |
dc.type.version | publishedVersion | es_ES |