Mostrar el registro sencillo

dc.contributor.authorCrespo Ruiz, Luis 
dc.contributor.authorSantos, Francisco 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-29T13:47:31Z
dc.date.available2025-01-29T13:47:31Z
dc.date.issued2024-06
dc.identifier.issn2470-6566
dc.identifier.otherPID2019-106188GB-I00es_ES
dc.identifier.otherPID2022-137283NB-C21es_ES
dc.identifier.otherPRE2020-092702es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35236
dc.description.abstractThe k-associahedron AsSk(n) is the simplicial complex of (fc + l)-crossing-free subgraphs of the complete graph with vertices on a circle. Its facets are called fc-triangulations. We explore the connection of Assk(n) with the Pfaffian variety Vf'k(n) of antisymmetric matrices of rank < 2k. First, we characterize the Grobner cone Grobk(n) for which the initial ideal of I(Vfk(n)) equals the Stanley-Reisner ideal of Assk(n) (that is, the monomial ideal generated by (k + l)-crossings). We then look at the tropicalization oiVfk{n) and show that Assk(n) embeds naturally as the intersection of trop(Vfk{n)) and Grobk(n), and that it is contained in the totally positive part trop+ (Pfk(n)) of it. We show that for fc = 1 and for each triangulation T of the n-gon, the projection of this embedding of Assk(n) to the n - 3 coordinates corresponding to diagonals in T gives a complete polytopal fan, realizing the associahedron. This fan is linearly isomorphic to the g-vector fan of the cluster algebra of type A. shown to be polytopal by Hohlweg, Pilaud, and Stella in 2018.es_ES
dc.description.sponsorshipSupported by grants PID2019-106188GB-I00, PID2022-137283NB-C21, and PRE2020-092702 funded by MCIN/AEI/10.13039/501100011033, and by project CLaPPo (21.SI03.64658) of Universidad de Cantabria and Banco Santander.es_ES
dc.format.extent31 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© 2024 Society for Industrial and Applied Mathematicses_ES
dc.sourceSIAM Journal on Applied Algebra and Geometry, 2024, 8(2), 302-332es_ES
dc.subject.otherMultitriangulationses_ES
dc.subject.otherTropical geometryes_ES
dc.subject.otherPfaffianses_ES
dc.subject.otherAssociahedrones_ES
dc.titleMultitriangulations and tropical Pfaffianses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1137/22M152750es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106188GB-I00/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137283NB-C21/ES/COMBINATORIA GEOMETRICA Y SUS APLICACIONES AL ALGEBRA/es_ES
dc.identifier.DOI10.1137/22M1527507
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo