Mostrar el registro sencillo

dc.contributor.authorNieto Reyes, Alicia 
dc.contributor.authorBattey, Heather
dc.contributor.authorFrancisci, Giacomo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-29T13:36:18Z
dc.date.available2025-01-29T13:36:18Z
dc.date.issued2021-04
dc.identifier.issn2227-7390
dc.identifier.otherMTM2017-86061-C2-2-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/35234
dc.description.abstractBlack-box techniques have been applied with outstanding results to classify, in a supervised manner, the movement patterns of Alzheimer's patients according to their stage of the disease. However, these techniques do not provide information on the difference of the patterns among the stages. We make use of functional data analysis to provide insight on the nature of these differences. In particular, we calculate the center of symmetry of the underlying distribution at each stage and use it to compute the functional depth of the movements of each patient. This results in an ordering of the data to which we apply nonparametric permutation tests to check on the differences in the distribution, median and deviance from the median. We consistently obtain that the movement pattern at each stage is significantly different to that of the prior and posterior stage in terms of the deviance from the median applied to the depth. The approach is validated by simulation.es_ES
dc.description.sponsorshipFor A.N.-R., this research was funded by grant number MTM2017-86061-C2-2-P of the Spanish Ministry of Science, Innovation and Universities. H.B was supported by the EPSRC under grant number EP/P002757/1es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMathematics, 2021, 9(8), 820es_ES
dc.subject.otherAlzheimer’s diseasees_ES
dc.subject.otherDementiaes_ES
dc.subject.otherFunctional data analysises_ES
dc.subject.otherFunctional depthes_ES
dc.subject.otherStatistical data depthes_ES
dc.subject.otherSymmetryes_ES
dc.titleFunctional symmetry and statistical depth for the analysis of movement patterns in Alzheimer's patientses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/math9080820es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-86061-C2-2-P/ES/REMUESTREO, RECORTES Y METRICAS PROBABILISTICAS. DATOS FUNCIONALES, PROYECCIONES ALEATORIAS Y PROFUNDIDADES ESTADISTICAS. APLICACIONES/es_ES
dc.identifier.DOI10.3390/math9080820
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).