• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Economía
    • D10 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Economía
    • D10 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling global fossil CO2 emissions with a lognormal distribution

    Ver/Abrir
    ModellingGlobalFossil.pdf (1.117Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/35149
    DOI: 10.1016/j.seps.2024.102104
    ISSN: 0038-0121
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Prieto Mendoza, FaustinoAutoridad Unican; García García, Catalina Beatriz; Salmerón Gomez, Román
    Fecha
    2025
    Derechos
    Alojado según Resolución CNEAI 9/12/24 (ANECA) © 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies
    Publicado en
    Socio-Economic Planning Sciences, 2025, 97, 102104
    Editorial
    Elsevier
    Resumen/Abstract
    Carbon dioxide emissions have emerged as a critical issue with a profound impact on the environment and the global economy. The steady increase in atmospheric CO2 levels has become a major contributor to climate change and its associated catastrophic effects. A global effort is needed to tackle this pressing challenge, requiring a deep understanding of emissions patterns and trends. This paper focuses on identifying the underlying distribution of CO2 emissions analysing the hypothesis that the fossil CO2 emissions data, at the country level, can be described by a 2-parameter statistical model for the whole range of the distribution (all world countries). We consider that modelling with a simple distribution can be particularly useful in understanding CO2 emissions and we are looking to make our findings more accessible to policymakers. We utilize data from four databases and analyse six candidate distributions (exponential, Fisk, gamma, lognormal, Lomax, Weibull). Our findings highlight the adequacy of the lognormal distribution in characterizing emissions across all countries and years studied. A comprehensive analysis of Gibrat´s Law from 1970 to 2021 is also presented, employing a rolling window approach for the short, medium, and long term. Our findings reveal that Gibrat?s Law appears to be a short-term phenomenon for original CO2 emissions, but not for per capita emissions, aligning with conclusions from previous research. Finally, we employ the lognormal model to predict emission parameters for the coming years and propose two policies for reducing total fossil CO2 emissions.
    Colecciones a las que pertenece
    • D10 Artículos [661]
    • D10 Proyectos de Investigación [76]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España