Mostrar el registro sencillo

dc.contributor.authorScardapane, Simone
dc.contributor.authorVan Vaerenbergh, Steven
dc.contributor.authorTotaro, Simone
dc.contributor.authorUncini, Aurelio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-23T17:43:22Z
dc.date.available2025-01-23T17:43:22Z
dc.date.issued2019-02
dc.identifier.issn0893-6080
dc.identifier.issn1879-2782
dc.identifier.otherTEC2014-57402-JINes_ES
dc.identifier.otherTEC2016-81900-REDTes_ES
dc.identifier.urihttps://hdl.handle.net/10902/35146
dc.description.abstractNeural networks are generally built by interleaving (adaptable) linear layers with (fixed) nonlinear activation functions. To increase their flexibility, several authors have proposed methods for adapting the activation functions themselves, endowing them with varying degrees of flexibility. None of these approaches, however, have gained wide acceptance in practice, and research in this topic remains open. In this paper, we introduce a novel family of flexible activation functions that are based on an inexpensive kernel expansion at every neuron. Leveraging several properties of kernel-based models, we propose multiple variations for designing and initializing these kernel activation functions (KAFs), including a multidimensional scheme allowing to nonlinearly combine information from different paths in the network. The resulting KAFs can approximate any mapping defined over a subset of the real line, either convex or non-convex. Furthermore, they are smooth over their entire domain, linear in their parameters, and they can be regularized using any known scheme, including the use l₁ of penalties to enforce sparseness. To the best of our knowledge, no other known model satisfies all these properties simultaneously. In addition, we provide an overview on alternative techniques for adapting the activation functions, which is currently lacking in the literature. A large set of experiments validates our proposal.es_ES
dc.description.sponsorshipThe work of Steven Van Vaerenbergh is supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain under grants TEC2014-57402-JIN (PRISMA) and TEC2016-81900-REDT (KERMES).es_ES
dc.format.extent55 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceNeural Networks, 2019, 110, 19-32es_ES
dc.subject.otherNeural networkses_ES
dc.subject.otherActivation functionses_ES
dc.subject.otherKernel methodses_ES
dc.titleKafnets: kernel-based non-parametric activation functions for neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.neunet.2018.11.002es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2014-57402-JIN/ES/TECNICAS AVANZADAS DE APRENDIZAJE MAQUINA PARA RECONOCIMIENTO DE PATRONES EN SERIES TEMPORALES/es_ES
dc.identifier.DOI10.1016/j.neunet.2018.11.002
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Excepto si se señala otra cosa, la licencia del ítem se describe como © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/