Mostrar el registro sencillo

dc.contributor.authorKaratzinis, Georgios D.
dc.contributor.authorBoutalis, Yiannis S.
dc.contributor.authorVan Vaerenbergh, Steven
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-23T17:32:52Z
dc.date.issued2024-09
dc.identifier.issn0888-3270
dc.identifier.issn1096-1216
dc.identifier.urihttps://hdl.handle.net/10902/35144
dc.description.abstractPredicting the Remaining Useful Life (RUL) of mechanical systems poses significant challenges in Prognostics and Health Management (PHM), impacting safety and maintenance strategies. This study evaluates Kernel Adaptive Filtering (KAF) architectures for predicting the RUL of aircraft engines, using NASA's C-MAPSS dataset for an in-depth intra-comparison. We investigate the effectiveness of KAF algorithms, focusing on their performance dynamics in RUL prediction. By examining their behavior across different pre-processing scenarios and metrics, we aim to pinpoint the most reliable and efficient KAF models for aircraft engine prognostics. Further, our study extends to an inter-comparison with approximately 60 neural network approaches, revealing that KAFs outperform more than half of these models, highlighting the potential and viability of KAFs in scenarios where computational efficiency and fewer trainable parameters are both crucial. Although KAFs do not always surpass the most advanced neural networks in performance metrics, they demonstrate resilience and efficiency, particularly underscored by the ANS-QKRLS algorithm. This evaluation study offers valuable insights into KAFs for RUL prediction, highlighting their operational behavior, setting a foundation for future machine learning innovations. It also paves the way for research into hybrid models and deep-learning-inspired KAF structures, potentially enhancing prognostic tools in mechanical systems.es_ES
dc.format.extent43 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMechanical Systems and Signal Processing, 2024, 218, 111551es_ES
dc.subject.otherRemaining Useful Life (RUL) Predictiones_ES
dc.subject.otherKernel Adaptive Filtering (KAF)es_ES
dc.subject.otherPrognostics and Health Management (PHM)es_ES
dc.subject.otherC-MAPSSes_ES
dc.titleAircraft engine remaining useful life prediction: a comparison study of Kernel adaptive filtering architectureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ymssp.2024.111551es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ymssp.2024.111551
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2026-10-01
dc.date.embargoEndDate2026-10-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/