Mostrar el registro sencillo

dc.contributor.authorCamus Braña, Paula
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.authorMedina Santamaría, Raúl 
dc.contributor.authorCofiño González, Antonio Santiago 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-21T10:55:36Z
dc.date.available2025-01-21T10:55:36Z
dc.date.issued2011-06
dc.identifier.issn0378-3839
dc.identifier.issn1872-7379
dc.identifier.otherCSD2007-00067es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35093
dc.description.abstractRecent wave reanalysis databases require the application of techniques capable of managing huge amounts of information. In this paper, several clustering and selection algorithms: K-Means (KMA), self-organizing maps (SOM) and Maximum Dissimilarity (MDA) have been applied to analyze trivariate hourly time series of met-ocean parameters (significant wave height, mean period, and mean wave direction). A methodology has been developed to apply the aforementioned techniques to wave climate analysis, which implies data pre-processing and slight modifications in the algorithms. Results show that: a) the SOM classifies the wave climate in the relevant "wave types" projected in a bidimensional lattice, providing an easy visualization and probabilistic multidimensional analysis; b) the KMA technique correctly represents the average wave climate and can be used in several coastal applications such as longshore drift or harbor agitation; c) the MDA algorithm allows selecting a representative subset of the wave climate diversity quite suitable to be implemented in a nearshore propagation methodology.es_ES
dc.description.sponsorshipThe work was partially funded by projects “GRACCIE” (CSD2007-00067, CONSOLIDER-INGENIO 2010) from the Spanish Ministry MICIN, “MARUCA” from the Spanish Ministry MF and “C3E” from the Spanish Ministry MAMRM. The authors thank Puertos del Estado (Spanish Ministry MF) for the use of the reanalysis data base.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2011. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCoastal Engineering, 2011, 8(6), 453-462es_ES
dc.subject.otherData mininges_ES
dc.subject.otherK-meanses_ES
dc.subject.otherMaximum dissimilarity algorithmes_ES
dc.subject.otherProbability density functiones_ES
dc.subject.otherReanalysis databasees_ES
dc.subject.otherSelf-organizing mapses_ES
dc.titleAnalysis of clustering and selection algorithms for the study of multivariate wave climatees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.coastaleng.2011.02.003es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//CSD2007-00067/ES/MULTIDISCIPLINARY RESEARCH CONSORTIUM ON GRADUAL AND ABRUPT CLIMATE CHANGES, AND THEIR IMPACTS ON THE ENVIRONMENT (GRACCIE)/es_ES
dc.identifier.DOI10.1016/j.coastaleng.2011.02.003
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2011. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2011. This manuscript version is made available under the CC-BY-NC-ND 4.0 license