Analysis of clustering and selection algorithms for the study of multivariate wave climate
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Camus Braña, Paula; Méndez Incera, Fernando Javier


Fecha
2011-06Derechos
© 2011. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Coastal Engineering, 2011, 8(6), 453-462
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Data mining
K-means
Maximum dissimilarity algorithm
Probability density function
Reanalysis database
Self-organizing maps
Resumen/Abstract
Recent wave reanalysis databases require the application of techniques capable of managing huge amounts of information. In this paper, several clustering and selection algorithms: K-Means (KMA), self-organizing maps (SOM) and Maximum Dissimilarity (MDA) have been applied to analyze trivariate hourly time series of met-ocean parameters (significant wave height, mean period, and mean wave direction). A methodology has been developed to apply the aforementioned techniques to wave climate analysis, which implies data pre-processing and slight modifications in the algorithms. Results show that: a) the SOM classifies the wave climate in the relevant "wave types" projected in a bidimensional lattice, providing an easy visualization and probabilistic multidimensional analysis; b) the KMA technique correctly represents the average wave climate and can be used in several coastal applications such as longshore drift or harbor agitation; c) the MDA algorithm allows selecting a representative subset of the wave climate diversity quite suitable to be implemented in a nearshore propagation methodology.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D56 Artículos [333]
- D56 Proyectos de Investigación [187]