Mostrar el registro sencillo

dc.contributor.authorFister, Iztok
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorFister, DuŠan
dc.contributor.authorFister, Iztok, Jr.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-21T07:50:32Z
dc.date.available2025-01-21T07:50:32Z
dc.date.issued2023-08
dc.identifier.issn1368-9894
dc.identifier.issn1367-0751
dc.identifier.otherTIN2017-89275-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/35082
dc.description.abstractThe results of evolutionary algorithms depend on population diversity that normally decreases by increasing the selection pressure from generation to generation. Usually, this can lead the evolution process to get stuck in local optima. This study is focused on mechanisms to avoid this undesired phenomenon by introducing parallel self-adapted differential evolution that decomposes a monolithic population into more variable-sized sub-populations and combining this with the characteristics of evolutionary multi-agent systems into a hybrid algorithm. The proposed hybrid algorithm operates with individuals having some characteristics of agents, e.g. they act autonomously by selecting actions, with which they affect the state of the environment. Additionally, this algorithm incorporates two additional mechanisms: ageing and adaptive population growth, which help the individuals by decision-making. The proposed parallel differential evolution was applied to the CEC’18 benchmark function suite, while the produced results were compared with some traditional stochastic nature-inspired population-based and state-of-the-art algorithms.es_ES
dc.description.sponsorshipIztok Fister is grateful for the _nancial support from the Slovenian Research Agency (Research Core Funding No. P2-0042 - Digital twin). Iztok Fister Jr. is grateful for the _nancial support from the Slovenian Research Agency (Research Core Funding No. P2-0057). Andres Iglesias and Akemi Galvez thank the Computer Science National Program of the Spanish Research Agency and European Funds, Project #TIN2017-89275-R. (AEI/FEDER, UE), and the PDE-GIR project of the European Union's Horizon 2020 program, Marie Sklodowska-Curie Actions Grant Agreement #778035.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherOxfordes_ES
dc.rightsThis is a pre-copyedited, author-produced version of an article accepted for publication in Logic Journal of the IGPL following peer review. The version of record Iztok Fister, Andres Iglesias, Akemi Galvez, DuŠan Fister, Iztok Fister, Design and implementation of parallel self-adaptive differential evolution for global optimization, Logic Journal of the IGPL, Volume 31, Issue 4, 2023, Pages 701-721 is available online at: https://doi.org/10.1093/jigpal/jzac034es_ES
dc.sourceLogic Journal of the IGPL, 2023, 31(4), 701-721es_ES
dc.subject.otherDiferential evolutiones_ES
dc.subject.otherVariable population sizees_ES
dc.subject.otherAging mechanismes_ES
dc.subject.otherAutonomous agentes_ES
dc.titleDesign and implementation of parallel self-adaptive differential evolution for global optimizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1093/jigpal/jzac034es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.identifier.DOI10.1093/jigpal/jzac034
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo