Mostrar el registro sencillo

dc.contributor.authorSoberón Velez, Alexandra Pilar es_ES
dc.contributor.authorMazzanti, Massimilianoes_ES
dc.contributor.authorMusolesi, Antonioes_ES
dc.contributor.authorRodríguez-Poo, Juan M. es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-17T13:07:34Z
dc.date.issued2025es_ES
dc.identifier.issn0047-259Xes_ES
dc.identifier.issn1095-7243es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35036
dc.description.abstractThis paper considers efficiency improvements in a partially linear panel data model that accounts for possible nonlinear effects of common covariates and allows for cross-sectional dependence arising simultaneously from unobserved common factors and spatial dependence. A generalized least squares-type estimator is proposed by taking into account this dependence structure. Also, possible gains in terms of the rate of convergence are studied. A Monte Carlo study is carried out to investigate the proposed estimators finite sample performance. Further, an empirical application is conducted to assess the impact of the carbon price linked to the European Union Emission Trading System on carbon dioxide emissions.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherAcademic Press Inc.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Multivariate Analysis, 2025, 206, 105393es_ES
dc.titleEfficient estimation of a partially linear panel data model with cross-sectional dependencees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.jmva.2024.105393es_ES
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2027-03-01
dc.date.embargoEndDate2027-03-01es_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International