Mostrar el registro sencillo

dc.contributor.authorCarretero-Genevrier, A.
dc.contributor.authorFrontera, C.
dc.contributor.authorHassini, A.
dc.contributor.authorOro-Sole, J.
dc.contributor.authorMoreno Sierra, César 
dc.contributor.authorObradors, X.
dc.contributor.authorPuig, T.
dc.contributor.authorMestres, N.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-16T09:09:11Z
dc.date.available2025-01-16T09:09:11Z
dc.date.issued2015-03
dc.identifier.issn0928-0707
dc.identifier.issn1573-4846
dc.identifier.otherMAT2008-01022es_ES
dc.identifier.otherMAT2011-28874-C02-01es_ES
dc.identifier.otherCSD2007-00041es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35011
dc.description.abstractSelf-standing La₀.₇Sr₀.₃MnO₃ nanotubes with outer diameter ranging from 100 to 200 nm have been successfully synthesized by template assisted chemical solution deposition using nanoporous anodized alumina membranes of varying pore size. This template synthetic strategy provides rather monodisperse size distributed nanotubes. A sol–gel based polymer precursor route was used to fill the porous membranes and a subsequent heat treatment (700–1,000 C) enabled the phase formation and crystallization of the nanotubes. A good control over viscosity, stoichiometry and stability of the precursor solution were identified as crucial parameters for the template aided synthesis. The synthesized La₀.₇Sr₀.₃MnO₃ nanotubes are polycrystalline and ferromagnetic with a Curie temperature of 350 K. Control over the nanowall thickness is attained by varying template filling time which is corroborated by magnetic moment results.es_ES
dc.description.sponsorshipWe acknowledge the financial support from MICINN (MAT2008-01022 and MAT2011-28874-c02-01), Consolider NANOSELECT (CSD2007-00041), Generalitat de Catalunya (2009 SGR 770 and Xarmae) and EU (HIPERCHEM, NMP4- CT2005-516858). Cellule Energie INSISCNRS awarded ACG with project PEPS (1D-RENOX). TESRF and Spanish CRG-beamline (spline) are acknowledged for the provision of beamtime; and J. Rubio-Zuazo for his helpful assistance during data collection.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAlojado según Resolución CNEAI 9/12/24 (ANECA). © Springer Science+Business Media New York 2014es_ES
dc.sourceJournal of Sol-Gel Science and Technology, 2015, 73(3), 620-627es_ES
dc.subject.otherNanotubeses_ES
dc.subject.otherFunctional oxideses_ES
dc.subject.otherChemical solution depositiones_ES
dc.subject.otherFerromagnetismes_ES
dc.subject.otherTemplatinges_ES
dc.subject.otherLa₀.₇Sr₀.₃MnO₃es_ES
dc.titleChemical solution growth of La₀.₇Sr₀.₃MnO₃ nanotubes in confined geometrieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s10971-014-3570-7es_ES
dc.rights.accessRightsclosedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//MAT2008-01022/ES/SUPERCONDUCTORES NANOESTRUCTURADOS BASADOS EN DEPOSICION DE SOLUCIONES QUIMICAS PARA APLICACIONES ENERGETICAS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//CSD2007-00041/ES/Materiales avanzados y Nanotecnologías para dispositivos y sistemas eléctricos, electrónicos y magnetoeletrónicos innovadores/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//MAT2011-28874-C02-01/ES/NANOESTRUCTURAS TENSIONADAS PARA CINTAS SUPERCONDUCTORAS DE YBCO DE BAJO COSTE Y PRESTACIONES ELEVADAS/es_ES
dc.identifier.DOI10.1007/s10971-014-3570-7
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo