Mostrar el registro sencillo

dc.contributor.authorZhang, Xiao
dc.contributor.authorLi, Xueqian
dc.contributor.authorReish, Matthew E.
dc.contributor.authorZhang, Du
dc.contributor.authorSu, Neil Qiang
dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.authorYang, Weitao
dc.contributor.authorEveritt, Henry O.
dc.contributor.authorLiu, Jie
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-15T13:39:29Z
dc.date.available2025-01-15T13:39:29Z
dc.date.issued2018-03
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.otherFIS2013-45854-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/35002
dc.description.abstractIn plasmon-enhanced heterogeneous catalysis, illumination accelerates reaction rates by generating hot carriers and hot surfaces in the constituent nanostructured metals. In order to understand how photogenerated carriers enhance the nonthermal reaction rate, the effects of photothermal heating and thermal gradients in the catalyst bed must be confidently and quantitatively characterized. This is a challenging task considering the conflating effects of light absorption, heat transport, and reaction energetics. Here, we introduce a methodology to distinguish the thermal and nonthermal contributions from plasmon-enhanced catalysts, demonstrated by illuminated rhodium nanoparticles on oxide supports to catalyze the CO₂ methanation reaction. By simultaneously measuring the total reaction rate and the temperature gradient of the catalyst bed, the effective thermal reaction rate may be extracted. The residual nonthermal rate of the plasmonenhanced reaction is found to grow with a superlinear dependence on illumination intensity, and its apparent quantum efficiency reaches ∼46% on a Rh/TiO₂ catalyst at a surface temperature of 350 °C. Heat and light are shown to work synergistically in these reactions: the higher the temperature, the higher the overall nonthermal efficiency in plasmon-enhanced catalysis.es_ES
dc.description.sponsorshipThis research is supported by the National Science Foundation (CHE-1565657) and the Army Research Office (Award W911NF-15-1-0320). X.Z. is supported by the Katherine Goodman Stern fellowship from the Graduate School, Duke University. X.L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. D.Z., N.Q.S., and W.Y. are supported by the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012575. Y.G. and F.M. are supported by MICINN (Spanish Ministry of Science and Innovation, project FIS2013-45854-P) and the Army Research Laboratory under Cooperative Agreement no. W911NF-17-2-0023. Y.G. thanks the University of Cantabria for the FPU grant.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAlojado según Resolución CNEAI 9/12/24 (ANECA) © 2018 American Chemical Societyes_ES
dc.sourceNano Lett. 2018, 18(3), 1714-1723es_ES
dc.subject.otherPlasmones_ES
dc.subject.otherPhotocatalystes_ES
dc.subject.otherRhodium nanoparticleses_ES
dc.subject.otherHeterogeneous catalysises_ES
dc.subject.otherCarbon dioxide reductiones_ES
dc.titlePlasmon-enhanced catalysis: distinguishing thermal and nonthermal effectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.nanolett.7b04776es_ES
dc.rights.accessRightsclosedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//FIS2013-45854-P/ES/SOBRE EL COMPORTAMIENTO ELECTROMAGNETICO DE SISTEMAS DE PEQUEÑAS PARTICULAS. METALES PARA EL UV Y DIELECTRICOS CON ALTO INDICE DE REFRACCION/es_ES
dc.identifier.DOI10.1021/acs.nanolett.7b04776
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo