Mostrar el registro sencillo

dc.contributor.authorDe la Rosa, Ángel
dc.contributor.authorSainz-Aja Guerra, José Adolfo 
dc.contributor.authorRivas Pelayo, Isaac 
dc.contributor.authorRuiz, Gonzalo
dc.contributor.authorFerreño Blanco, Diego 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-14T10:11:10Z
dc.date.available2025-01-14T10:11:10Z
dc.date.issued2024-12
dc.identifier.issn2214-5095
dc.identifier.otherPID2019-110928RB-C31es_ES
dc.identifier.otherPID2021-124521OB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34984
dc.description.abstractSteel fiber reinforcement significantly enhances the flexural strength of concrete, which is vital for structural integrity. Annex L of the new Eurocode 2 classifies steel fiber-reinforced concrete by its flexural performance, aiding engineers in designing resilient structures. This study investigates the flexural behavior of steel fiber-reinforced concrete (SFRC) using three data-driven methodologies: Frequentist Inference (FI), Bayesian Inference (BI), and Machine Learning (ML). A comprehensive database was constructed from three-point bending tests on SFRC specimens, encompassing various compressive strengths, fiber quantities, and geometric parameters, to identify key factors influencing material properties.The findings indicate that all three methodologies yield comparable predictive capabilities for flexural responses in SFRC. Notably, FI models emphasize the importance of compressive strength and fiber volume fraction, along with fiber properties such as non-dimensional length and tensile strength. BI models enhance predictive stability by integrating prior knowledge and quantifying uncertainty, demonstrating their advantage, particularly in data-scarce situations. Additionally, ML analysis reveals that linear regression (LR) models can achieve accuracy similar to or greater than that of more complex models. This research provides novel insights into the application of BI and ML in concrete technology, emphasizing their potential to enhance predictive modeling. Additionally, it offers practical guidelines for optimizing SFRC design through a case study that compares residual flexural strengths obtained via Bayesian analysis, classifying the material in accordance with Annex L of the new Eurocode 2.es_ES
dc.description.sponsorshipThis research received funding from the Universidad de Castilla-La Mancha, Spain, and the Fondo Europeo de Desarrollo Regional through grant 2022-GRIN-34124, and from the Ministerio de Ciencia e Innovación, Spain, through grants PID2019-110928RB-C31 and PID2021-124521OB-I00.es_ES
dc.format.extent24 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceCase Studies in Construction Materials, 2024, 21, 03822es_ES
dc.subject.otherSteel-fiber reinforced concretees_ES
dc.subject.otherFlexural behavioures_ES
dc.subject.otherData-driven analysises_ES
dc.subject.otherFrequentist inferencees_ES
dc.subject.otherBayesian inferencees_ES
dc.subject.otherMachine learninges_ES
dc.titleComparative analysis of flexural strength prediction in SFRC using frequentist, bayesian, and machine learning approacheses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cscm.2024.e03822es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110928RB-C31/ES/GENERACION DE DAÑO Y MODELADO PROBABILISTA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124521OB-I00/ES/FABRICACION DE PIEZAS 3D Y RECUBRIMIENTOS CERAMICOS DE FORMA INTRINCADA COMBINANDO RUTAS COLOIDALES Y ESTEREOLITOGRAFIA/es_ES
dc.identifier.DOI10.1016/j.cscm.2024.e03822
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International