Mostrar el registro sencillo

dc.contributor.authorLi, Jingcheng
dc.contributor.authorBrandimarte Mendonça, Pedro
dc.contributor.authorVilas Varela, Manuel
dc.contributor.authorMerino Díez, Nestor
dc.contributor.authorMoreno Sierra, César 
dc.contributor.authorMugarza, Aitor
dc.contributor.authorSáez Mollejo, Jaime
dc.contributor.authorSanchez-Portal, Daniel
dc.contributor.authorGarcia de Oteyza, Dimas
dc.contributor.authorCorso, Martina
dc.contributor.authorGarcia-Lekue, Aran
dc.contributor.authorPeña, Diego
dc.contributor.authorPascual, José I.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-13T13:40:32Z
dc.date.available2025-01-13T13:40:32Z
dc.date.issued2020-10
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.otherMAT2016-78293-C6es_ES
dc.identifier.otherFIS2017-83780-Pes_ES
dc.identifier.otherSEV-2017-0706es_ES
dc.identifier.otherMDM-2016-0618es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34977
dc.description.abstractThe electronic properties of graphene nanoribbons (GNRs) can be precisely tuned by chemical doping. Here we demonstrate that amino (NH₂) functional groups attached at the edges of chiral GNRs (chGNRs) can efficiently gate the chGNRs and lead to the valence band (VB) depopulation on a metallic surface. The NH₂-doped chGNRs are grown by on-surface synthesis on Au(111) using functionalized bianthracene precursors. Scanning tunneling spectroscopy resolves that the NH₂ groups significantly upshift the bands of chGNRs, causing the Fermi level crossing of the VB onset of chGNRs. Through density functional theory simulations we confirm that the hole-doping behavior is due to an upward shift of the bands induced by the edge NH₂ groups.es_ES
dc.description.sponsorshipWe acknowledge financial support from: i) AEI/FEDER-EU through grants no. MAT2016-78293-C6, FIS2017-83780-P (AEI/FEDER,EU), the Maria de Maeztu unit of excellence MDM-2016-0618, and the Severo Ochoa program (ICN2) SEV-2017-0706; ii) the European Research Council (grant agreement no. 635919); iii) the Xunta de Galicia (Centro singular de investigación de Galicia, accreditation 20162019, ED431G/09); iv) the EU project SPRING (863098); v) the European Regional Development Fund (ERDF) under the program Interreg V-A España-Francia-Andorra (Contract No. EFA 194/16 TNI), vi) the CERCA Program/Generalitat de Catalunya, and vii) the Gobierno Vasco-UPV/EHU (project IT1246-19).es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see: https://dx.doi.org/10.1021/acsnano.9b08162.es_ES
dc.sourceACS Nano, 2020, 14(2), 1895-1901es_ES
dc.subject.otherScanning tunneling microscopees_ES
dc.subject.otherDensity functional theoryes_ES
dc.subject.otherChiral graphene nanoribbonses_ES
dc.subject.otherDopinges_ES
dc.subject.otherAminoes_ES
dc.subject.otherChemical gatinges_ES
dc.subject.otherDand depopulationes_ES
dc.titleBand depopulation of graphene nanoribbons induced by chemical gating with amino groupses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://dx.doi.org/10.1021/acsnano.9b08162?ref=pdfes_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83780-P/ES/UNA NUEVA PLATAFORMA PARA ELECTRONICA Y OPTICA CUANTICA DE ELECTRONES BASADA EN NANOESTRUCTURAS DE GRAFENO/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/SEV-2017-0706es_ES
dc.identifier.DOI10.1021/acsnano.9b08162
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo