Mostrar el registro sencillo

dc.contributor.authorSánchez, Luises_ES
dc.contributor.authorLeiva, Víctores_ES
dc.contributor.authorSaulo, Heltones_ES
dc.contributor.authorMarchant, Carolinaes_ES
dc.contributor.authorSarabia Alegría, José María es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-13T11:31:37Z
dc.date.available2025-01-13T11:31:37Z
dc.date.issued2021-11-01es_ES
dc.identifier.issn2227-7390es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34963
dc.description.abstractStandard regression models focus on the mean response based on covariates. Quantile regression describes the quantile for a response conditioned to values of covariates. The relevance of quantile regression is even greater when the response follows an asymmetrical distribution. This relevance is because the mean is not a good centrality measure to resume asymmetrically distributed data. In such a scenario, the median is a better measure of the central tendency. Quantile regression, which includes median modeling, is a better alternative to describe asymmetrically distributed data. The Weibull distribution is asymmetrical, has positive support, and has been extensively studied. In this work, we propose a new approach to quantile regression based on the Weibull distribution parameterized by its quantiles. We estimate the model parameters using the maximum likelihood method, discuss their asymptotic properties, and develop hypothesis tests. Two types of residuals are presented to evaluate the model fitting to data. We conduct Monte Carlo simulations to assess the performance of the maximum likelihood estimators and residuals. Local influence techniques are also derived to analyze the impact of perturbations on the estimated parameters, allowing us to detect potentially influential observations. We apply the obtained results to a real-world data set to show how helpful this type of quantile regression model is.es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMathematics, 2021, 9(21), 2768es_ES
dc.titleA new quantile regression model and its diagnostic analytics for a weibull distributed response with applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://www.mdpi.com/2227-7390/9/21/2768es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/math9212768es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International