Mostrar el registro sencillo

dc.contributor.authorLeón Merino, Iván 
dc.contributor.authorNakao, Hiroya
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-10T16:16:19Z
dc.date.issued2023-11
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.urihttps://hdl.handle.net/10902/34945
dc.description.abstractPhase reduction is a dimensionality reduction scheme to describe the dynamics of nonlinear oscillators with a single phase variable. While it is crucial in synchronization analysis of coupled oscillators, analytical results are limited to few systems. In this work, we analytically perform phase reduction for a wide class of oscillators by extending the Poincaré-Lindstedt perturbation theory. We exemplify the utility of our approach by analyzing an ensemble of Van der Pol oscillators, where the derived phase model provides analytical predictions of their collective synchronization dynamics.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherPergamon/Elsevieres_ES
dc.rights© Pergamon/Elsevieres_ES
dc.sourceChaos, Solitons and Fractals, 2023, 176, 114117es_ES
dc.titleAnalytical phase reduction for weakly nonlinear oscillatorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.chaos.2023.114117es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.chaos.2023.114117
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2025-12-01
dc.date.embargoEndDate2025-12-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo