Analytical phase reduction for weakly nonlinear oscillators
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2023-11Derechos
© Pergamon/Elsevier
Publicado en
Chaos, Solitons and Fractals, 2023, 176, 114117
Editorial
Pergamon/Elsevier
Disponible después de
2025-12-01
Enlace a la publicación
Resumen/Abstract
Phase reduction is a dimensionality reduction scheme to describe the dynamics of nonlinear oscillators with a single phase variable. While it is crucial in synchronization analysis of coupled oscillators, analytical results are limited to few systems. In this work, we analytically perform phase reduction for a wide class of oscillators by extending the Poincaré-Lindstedt perturbation theory. We exemplify the utility of our approach by analyzing an ensemble of Van der Pol oscillators, where the derived phase model provides analytical predictions of their collective synchronization dynamics.
Colecciones a las que pertenece
- D20 Artículos [468]