Mostrar el registro sencillo

dc.contributor.authorDintén Herrero, Ricardo 
dc.contributor.authorLópez Martínez, Patricia 
dc.contributor.authorZorrilla Pantaleón, Marta E. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-01-08T14:28:18Z
dc.date.available2025-01-08T14:28:18Z
dc.date.issued2024
dc.identifier.issn2452-414X
dc.identifier.issn2467-964X
dc.identifier.otherPID 2021-124502OB-C42 (PRESECREL)es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34897
dc.description.abstractThe fourth industrial revolution advocates the reformulation of industrial processes to achieve the end-to-end (provider-customer) digitalisation of the industrial sector. As is well known, the industrial environment is very complex, where legacy systems must interoperate and integrate with modern devices and sensors. Communication among them requires specific and costly developments, so architectures based on data sharing and services implementation are considered one of the most flexible and appropriate technological solutions to gradually achieve the desired horizontal and vertical integration of the value chain. The design and deployment of data-intensive applications is not straightforward, therefore this paper proposes a model-based tool to characterise the different elements to be configured in an application and to make its deployment easier by generating configuration, orchestration and deployment files and sending them to the corresponding nodes for their execution. In few words, this article highlights the advantages of distributed and data-centric architectures to face the challenge of integration and interoperability in data-intensive complex systems and presents the extension of the RAI4 metamodel proposed in Martínez et al. (2021) that now allows specifying how, containerised or not, and where, on the cloud, fog, edge or on-premise, each service can be hosted according to its functional and non-functional requirements, mainly issues related with real-time, security and cyber physical hardware dependencies. For the sake of comprehension, a pseudo-real use case addressed to pre-process and store pollution data from environmental sensors installed in a smart city is described in detail, including different deployment settings.es_ES
dc.description.sponsorshipThis work was partially supported by MCIN/ AEI /10.13039/5011 00011033/ FEDER "Una manera de hacer Europa" under grant PID 2021-124502OB-C42 (PRESECREL) and the predoctoral program "Concepción Arenal del Programa de Personal Investigador en formación Predoctoral" funded by Universidad de Cantabria and Cantabria's Government (BOC 18-10-2021).es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier BVes_ES
dc.rights©2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Industrial Information Integration, 2024, 41, 100668es_ES
dc.subject.otherModel-basedes_ES
dc.subject.otherDigital platformes_ES
dc.subject.otherContainerisationes_ES
dc.subject.otherService-orientedes_ES
dc.subject.otherCloud/edge computinges_ES
dc.subject.otherInternet of thingses_ES
dc.titleModel-based tool for the design, configuration and deployment of data-intensive applications in hybrid environments: an industry 4.0 case studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jii.2024.100668es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.identifier.DOI10.1016/j.jii.2024.100668
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

©2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/)Excepto si se señala otra cosa, la licencia del ítem se describe como ©2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/)