Mostrar el registro sencillo

dc.contributor.authorMazor, Alon
dc.contributor.authorPérez Gandarillas, Lucía 
dc.contributor.authorRyck, Alain de
dc.contributor.authorMichrafy, Abderrahim
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-27T08:40:58Z
dc.date.available2024-12-27T08:40:58Z
dc.date.issued2016-02
dc.identifier.issn0032-5910
dc.identifier.issn1873-328X
dc.identifier.urihttps://hdl.handle.net/10902/34843
dc.description.abstractIn the pharmaceutical industry, the roll compaction is part of the dry granulation process, densifying fine powders into ribbons that will be later milled to produce granules with good flowability for subsequent die compaction process. Roll compactors are constructed with a sealing system, limiting the loss of powder from the sides. However, the sealing system may result in unwanted non-uniformity of the ribbon's properties. In this work, a 3D Finite Elements Method (FEM) modeling is used to analyze the roll compaction process and the effect of sealing system designs on the compacted ribbon's density distribution. A density dependent Drucker-Prager Cap (DPC) constitutive model for microcrystalline cellulose (Avicel PH-101) was calibrated and implemented in Abaqus/Explicit. Two different FEM models were investigated, one with a fixed side sealing called cheek plates and another where the side sealing is integrated with the bottom roll called rimmed-roll. Both numerical and experimental results clearly show the non-uniform roll pressure and density distribution for the cheek plates assembly, whereas the rimmed-roll shows an overall more uniformly distributed resultant pressure and density distribution. These results demonstrate the capability of FEM modeling to provide insight and help achieving a better understanding of the roll compaction process.es_ES
dc.description.sponsorshipThis project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 316555. The authors would like to thank Prof. Peter Kleinebudde and Mrs. Ana Pérez Gago from Düsseldorf University for providing scientific, and technical support and recommendations using the Gerteis roll compactor. The authors also thank Dr. Gavin Reynolds and Dr. Andreja Mirtic from AstraZeneca,UK for giving access to the GeoPyc in order to validate this work.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePowder Technology, 2016, 289, 21-30es_ES
dc.subject.otherRoll compactiones_ES
dc.subject.otherFinite Elements Methodes_ES
dc.subject.otherDrucker–Prager Cap modeles_ES
dc.subject.otherDensity distributiones_ES
dc.subject.otherRimmed-rolles_ES
dc.titleEffect of roll compactor sealing system designs: a finite element analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.powtec.2015.11.039es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.powtec.2015.11.039
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license