Mostrar el registro sencillo

dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorOrtiz Márquez, María Dolores 
dc.contributor.authorAlcaraz de la Osa, Rodrigo 
dc.contributor.authorSaiz Vega, José María 
dc.contributor.authorGonzález Fernández, Francisco 
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-20T14:40:56Z
dc.date.available2024-12-20T14:40:56Z
dc.date.issued2019-07
dc.identifier.issn2073-4344
dc.identifier.urihttps://hdl.handle.net/10902/34807
dc.description.abstractThe possibility of using light to drive chemical reactions has highlighted the role of photocatalysis as a key tool to address the environmental and energy issues faced by today's society. Plasmonic photocatalysis, proposed to circumvent some of the problems of conventional semiconductor catalysis, uses hetero-nanostructures composed by plasmonic metals and semiconductors as catalysts. Metal-semiconductor core-shell nanoparticles present advantages (i.e., protecting the metal and enlarging the active sites) with respect to other hetero-nanostructures proposed for plasmonic photocatalysis applications. In order to maximize light absorption in the catalyst, it is critical to accurately model the reflectance/absorptance/transmittance of composites and colloids with metal-semiconductor core-shell nanoparticle inclusions. Here, we present a new method for calculating the effective dielectric function of metal-semiconductor core-shell nanoparticles and its comparison with existing theories showing clear advantages. Particularly, this new method has shown the best performance in the prediction of the spectral position of the localized plasmonic resonances, a key parameter in the design of efficient photocatalysts. This new approach can be considered as a useful tool for designing coated particles with desired plasmonic properties and engineering the effective permittivity of composites with core-shell type inclusions which are used in photocatalysis and solar energy harvesting applications.es_ES
dc.description.sponsorshipThis research was funded by the Army Research Laboratory under Cooperative Agreement Number W911NF-17-2-0023 and by SODERCAN (Sociedad para el Desarrollo de Cantabria) and the Research Vicerrectorate of the University of Cantabria through project 4JU2864661.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceCatalysts, 2019, 9(7), 626es_ES
dc.subject.otherEffective medium theoryes_ES
dc.subject.otherMetal-semiconductores_ES
dc.subject.otherCore-shelles_ES
dc.subject.otherPhotocatalysises_ES
dc.subject.otherPlasmonicses_ES
dc.titleElectromagnetic effective medium modelling of composites with metal-semiconductor core-shell type inclusionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/catal9070626es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/catal9070626
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).