Mostrar el registro sencillo

dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.authorFister, Iztok
dc.contributor.authorFister, Iztok Jr.
dc.contributor.authorOtero González, César Antonio 
dc.contributor.authorDíaz Severiano, José Andrés 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-09T14:09:51Z
dc.date.available2024-12-09T14:09:51Z
dc.date.issued2021-11
dc.identifier.issn1877-7503
dc.identifier.issn1877-7511
dc.identifier.otherTIN2017-89275-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/34578
dc.description.abstractImage processing techniques are becoming standard technology in many medical specialities, such as dermatology, where they are a key tool for the early detection and diagnosis of melanoma and other skin cancers and tumors. A previous paper by the authors presented at SOCO 2020 conference introduced a new method for image segmentation of skin images through functional networks. The method performs well but it relies on a semi-automatic approach involving a combination of manual and automatic operations. This paper aims at making image segmentation of macroscopic skin images a fully automatic process. To this purpose, the present work extends our previous paper with five new relevant contributions: (1) a filtering strategy for removal of noise, hair and other artifacts; (2) two morphological operators for image enhancement; (3) a clustering-based binary classifier to separate the skin tumor from the image background; (4) a smoothing and discretization process to obtain the border points; and (5) a curve reconstruction method from the border points with NURBS using a new type of functional network particularly tailored for this task. This new method is applied to two different benchmarks, comprised respectively of four and two macroscopic medical images of skin tumors. The visual and numerical results show that the method performs very well, yielding segmented images which are suitable for clinical practice. This method is a significant step towards the future development of a fully automatic approach for the whole medical image analysis pipeline of skin images, including diagnosis and classification.es_ES
dc.description.sponsorshipAkemi Gálvez and Andrés Iglesias have received funding from the project PDE-GIR of the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 778035, and from the project TIN2017-89275-R funded by MCIN/AEI /10.13039/501100011033/FEDER “Una manera de hacer Europa”. Iztok Fister acknowledges financial support from the Slovenian Research Agency (Grant No. P2-0041). Iztok Fister Jr. acknowledges financial support from the Slovenian Research Agency (Grant No. P2-0057)es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Computational Science 2021, 56, 101481es_ES
dc.subject.otherSoft computinges_ES
dc.subject.otherMedical imaginges_ES
dc.subject.otherCutaneous melanomaes_ES
dc.subject.otherFunctional networkses_ES
dc.subject.otherImage segmentationes_ES
dc.subject.otherMacroscopic imageses_ES
dc.titleNURBS functional network approach for automatic image segmentation of macroscopic medical images in melanoma detectiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jocs.2021.101481es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/es_ES
dc.identifier.DOI10.1016/j.jocs.2021.101481
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license