dc.contributor.author | Fister, Iztok | |
dc.contributor.author | Iglesias Prieto, Andrés | |
dc.contributor.author | Gálvez Tomida, Akemi | |
dc.contributor.author | Del Ser, Javier | |
dc.contributor.author | Osaba, Eneko | |
dc.contributor.author | Fister, Iztok Jr. | |
dc.contributor.author | Perc, Matjaž | |
dc.contributor.author | Slavinec, Mitja | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-12-09T13:58:00Z | |
dc.date.available | 2024-12-09T13:58:00Z | |
dc.date.issued | 2019-04-15 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.other | TIN2017-89275-R | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/34577 | |
dc.description.abstract | Novelty search is a tool in evolutionary and swarm robotics for maintaining the diversity of population needed for continuous robotic operation. It enables nature-inspired algorithms to evaluate solutions on the basis of the distance to their k-nearest neighbors in the search space. Besides this, the fitness function represents an additional measure for evaluating the solution, with the purpose of preserving the so-named novelty solutions into the next generation. In this study, a differential evolution was hybridized with novelty search. The differential evolution is a well-known algorithm for global optimization, which is applied to improve the results obtained by the other solvers on the CEC-14 benchmark function suite. Furthermore, functions of different dimensions were taken into consideration, and the influence of the various novelty search parameters was analyzed. The results of experiments show a great potential for using novelty search in global optimization. | es_ES |
dc.description.sponsorship | Iztok Fister acknowledges financial support from the Slovenian Research Agency (Grant no. P2-0041). Iztok Fister Jr. acknowledges financial support from the Slovenian Research Agency (Grant no. P2-0057). Matjaž Perc acknowledges financial support from the Slovenian Research Agency (Grant nos. J1-7009, J4-9302, J1-9112 and P5-0027). Andres Iglesias and Akemi Galvez acknowledge financial support from the projects TIN2017-89275-R (AEI/FEDER, UE) and PDE-GIR (H2020, MSCA program, ref. 778035). Eneko Osaba and Javier Del Ser would like to thank the Basque Government for its funding support through the EMAITEK program. | es_ES |
dc.format.extent | 32 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier Inc. | es_ES |
dc.rights | © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Applied Mathematics and Computation, 2019, 347, 865-881 | es_ES |
dc.subject.other | Novelty search | es_ES |
dc.subject.other | Differential evolution | es_ES |
dc.subject.other | Swarm intelligence | es_ES |
dc.subject.other | Evolutionary robotics | es_ES |
dc.subject.other | Artificial life | es_ES |
dc.title | Novelty search for global optimization | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.amc.2018.11.052 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/ | es_ES |
dc.identifier.DOI | 10.1016/j.amc.2018.11.052 | |
dc.type.version | acceptedVersion | es_ES |