Mostrar el registro sencillo

dc.contributor.authorFister, Iztok
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorDel Ser, Javier
dc.contributor.authorOsaba, Eneko
dc.contributor.authorFister, Iztok Jr.
dc.contributor.authorPerc, Matjaž
dc.contributor.authorSlavinec, Mitja
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-09T13:58:00Z
dc.date.available2024-12-09T13:58:00Z
dc.date.issued2019-04-15
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.otherTIN2017-89275-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/34577
dc.description.abstractNovelty search is a tool in evolutionary and swarm robotics for maintaining the diversity of population needed for continuous robotic operation. It enables nature-inspired algorithms to evaluate solutions on the basis of the distance to their k-nearest neighbors in the search space. Besides this, the fitness function represents an additional measure for evaluating the solution, with the purpose of preserving the so-named novelty solutions into the next generation. In this study, a differential evolution was hybridized with novelty search. The differential evolution is a well-known algorithm for global optimization, which is applied to improve the results obtained by the other solvers on the CEC-14 benchmark function suite. Furthermore, functions of different dimensions were taken into consideration, and the influence of the various novelty search parameters was analyzed. The results of experiments show a great potential for using novelty search in global optimization.es_ES
dc.description.sponsorshipIztok Fister acknowledges financial support from the Slovenian Research Agency (Grant no. P2-0041). Iztok Fister Jr. acknowledges financial support from the Slovenian Research Agency (Grant no. P2-0057). Matjaž Perc acknowledges financial support from the Slovenian Research Agency (Grant nos. J1-7009, J4-9302, J1-9112 and P5-0027). Andres Iglesias and Akemi Galvez acknowledge financial support from the projects TIN2017-89275-R (AEI/FEDER, UE) and PDE-GIR (H2020, MSCA program, ref. 778035). Eneko Osaba and Javier Del Ser would like to thank the Basque Government for its funding support through the EMAITEK program.es_ES
dc.format.extent32 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Inc.es_ES
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Mathematics and Computation, 2019, 347, 865-881es_ES
dc.subject.otherNovelty searches_ES
dc.subject.otherDifferential evolutiones_ES
dc.subject.otherSwarm intelligencees_ES
dc.subject.otherEvolutionary roboticses_ES
dc.subject.otherArtificial lifees_ES
dc.titleNovelty search for global optimizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.amc.2018.11.052es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/es_ES
dc.identifier.DOI10.1016/j.amc.2018.11.052
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license