Mostrar el registro sencillo

dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-09T13:21:30Z
dc.date.available2024-12-09T13:21:30Z
dc.date.issued2020-01
dc.identifier.issn1474-0346
dc.identifier.issn1873-5320
dc.identifier.otherTIN2017-89275es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34575
dc.description.abstractThis work follows up a previous paper at conference Cyberworlds 2018 for automatic border approximation of cutaneous melanoma and other skin lesions from macroscopic medical images. Given a set of feature points on the boundary of the skin lesion obtained by a dermatologist, we introduce a new method for automatic least-squares B-spline curve fitting of such feature points. The method is based on the original cuckoo search algorithm used in the conference paper but with three major modifications: (1) we use an enhanced version of the algorithm in which the parameters change dynamically with the generations; (2) this improved method is coupled with the Luus-Jaakola local search heuristics for better performance; (3) the original Bézier curves are now replaced by the more powerful and more general B-spline curves, providing extra flexibility and lower polynomial degree. The new method (called memetic improved cuckoo search algorithm) has been applied to a benchmark comprised of ten medical images of skin lesions. The computer results show that it performs very well and yields a border curve enclosing the lesion and fitting the feature points with good accuracy. Furthermore, a comparison with ten alternative methods in the literature (six standard mathematical methods for B-spline fitting, two state-of-the art methods in medical imaging, the method in our conference paper and the non-memetic version of our new method) shows that it outperforms all these methods in terms of numerical accuracy for the instances in our reference benchmark.es_ES
dc.description.sponsorshipThis research work has received funding from the project PDE-GIR of the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 778035, and the Spanish Ministry of Science, Innovation, and Universities (Computer Science National Program) under grant #TIN2017-89275-R of the Agencia Estatal de Investigación and European Funds EFRD (AEI/FEDER, UE). The authors are particularly grateful to the Department of Information Science of Toho University for all the facilities given to carry out this work.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Limitedes_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvanced Engineering Informatics, 2020, 43, 101005es_ES
dc.subject.otherSwarm intelligencees_ES
dc.subject.otherCuckoo search algorithmes_ES
dc.subject.otherMedical image segmentationes_ES
dc.subject.otherCutaneous melanomaes_ES
dc.subject.otherBorder approximationes_ES
dc.subject.otherB-spline curveses_ES
dc.titleMemetic improved cuckoo search algorithm for automatic B-spline border approximation of cutaneous melanoma from macroscopic medical imageses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.aei.2019.101005es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/es_ES
dc.identifier.DOI10.1016/j.aei.2019.101005
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license