Mostrar el registro sencillo

dc.contributor.authorGómez, Iosu
dc.contributor.authorDíaz de Cerio, Unai
dc.contributor.authorParra, Jorge
dc.contributor.authorRivas Concepción, Juan María 
dc.contributor.authorGutiérrez García, José Javier 
dc.contributor.authorGonzález Harbour, Michael 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-04T16:22:50Z
dc.date.available2024-12-04T16:22:50Z
dc.date.issued2024-12
dc.identifier.issn1383-7621
dc.identifier.otherPID2021-124502OB-C42es_ES
dc.identifier.otherPID2021-124502OB-C44es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34563
dc.description.abstractThe ever increasing computing demands in embedded systems is driving the adoption of hardware accelerators such as GPUs, which offer powerful platforms that can compute parallel workloads efficiently. Relevant critical applications that benefit from such platforms, for instance autonomous driving, usually impose additional real-time requirements that must be met to guarantee the correctness of the systems. In this paper, we propose exploiting readily available and extensively validated techniques to model and analyze real-time systems with GPUs. Specifically, we propose a methodology to employ the MAST model to characterize such systems, and different variants of the Offset-Based Response-Time Analysis techniques to validate the real-time requirements. We verify our approach with a real industrial application sourced from the railway industry. Through a comprehensive evaluation involving synthetic and real task-sets, we characterize the applicability of the approach, and we also show how estimated worst-case response times are aligned with real measurements up to 87.2%.es_ES
dc.description.sponsorshipThis work was partially supported by MCIN/ AEI / 10.13039/501100011033/ FEDER ‘‘Una manera de hacer Europa’’ under grants PID2021-124502OB-C42 and PID2021-124502OB-C44 (PRESECREL).es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Systems Architecture, 2024, 157, 103300es_ES
dc.subject.otherReal timees_ES
dc.subject.otherModelinges_ES
dc.subject.otherSchedulability analysises_ES
dc.subject.otherTime partitioninges_ES
dc.subject.otherGPUses_ES
dc.titleUsing MAST for modeling and response-time analysis of real-time applications with GPUses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sysarc.2024.103300es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C44/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.identifier.DOI10.1016/j.sysarc.2024.103300
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).