Mostrar el registro sencillo

dc.contributor.authorBihan, Frêdêric
dc.contributor.authorSantos, Francisco 
dc.contributor.authorSpaenlehauer, Pierre Jean
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-12-04T14:01:11Z
dc.date.available2024-12-04T14:01:11Z
dc.date.issued2018
dc.identifier.issn2470-6566
dc.identifier.otherMTM2014-54207-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/34559
dc.description.abstractWe investigate a version of Viro's method for constructing polynomial systems with many positive solutions, based on regular triangulations of the Newton polytope of the system. The number of positive solutions obtained with our method is governed by the size of the largest positively decorable subcomplex of the triangulation. Here, positive decorability is a property that we introduce and which is dual to being a subcomplex of some regular triangulation. Using this duality, we produce large positively decorable subcomplexes of the boundary complexes of cyclic polytopes. As a byproduct, we get new lower bounds, some of them being the best currently known, for the maximal number of positive solutions of polynomial systems with prescribed numbers of monomials and variables. We also study the asymptotics of these numbers and observe a log-concavity property.es_ES
dc.description.sponsorshipThe second author's research was partially supported by grant MTM2014-54207-P of the Spanish Ministry of Science, by the Einstein Foundation Berlin, and, while he was in residence at the Mathematical Sciences Research Institute in Berkeley, California during the Fall 2017 semester, by the Clay Institute and the National Science Foundation (grant DMS-1440140).es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© 2018, Society for Industrial and Applied Mathematicses_ES
dc.sourceSIAM Journal on Applied Algebra and Geometry, 2018, 2(4), 620-645es_ES
dc.subject.otherPolynomial systemses_ES
dc.subject.otherTriangulationses_ES
dc.subject.otherCyclic polytopeses_ES
dc.titleA polyhedral method for sparse systems with many positive solutionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1137/18M1181912es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2014-54207-P/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/es_ES
dc.identifier.DOI10.1137/18M1181912
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo