Mostrar el registro sencillo

dc.contributor.authorCano Ortiz, Saúl 
dc.contributor.authorSainz Ortiz, Eugenio 
dc.contributor.authorLloret Iglesias, Lara
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorCastro Fresno, Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-11-26T13:04:25Z
dc.date.available2024-11-26T13:04:25Z
dc.date.issued2024-11-21
dc.identifier.issn2045-2322
dc.identifier.otherTED2021-129749B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34519
dc.description.abstractDeep learning-based computer vision systems have become powerful tools for automated and cost-effective pavement distress detection, essential for efficient road maintenance. Current methods focus primarily on developing supervised learning architectures, which are limited by the scarcity of annotated image datasets. The use of data augmentation with synthetic images created by generative models to improve these supervised systems is not widely explored. The few studies that do focus on generative architectures are mostly non-conditional, requiring extra labeling, and typically address only road crack defects while aiming to improve classification models rather than object detection. This study introduces AsphaltGAN, a novel class-conditional Generative Adversarial Network with attention mechanisms, designed to augment datasets with various rare road defects to enhance object detection. An in-depth analysis evaluates the impact of different loss functions and hyperparameter tuning. The optimized AsphaltGAN outperforms state-of-the-art generative architectures on public datasets. Additionally, a new workflow is proposed to improve object detection models using synthetic road images. The augmented datasets significantly improve the object detection metrics of You Only Look Once version 8 by 33.0%, 3.8%, 46.3%, and 51.8% on the Road Damage Detection 2022 dataset, Crack Dataset, Asphalt Pavement Detection Dataset, and Crack Surface Dataset, respectively.es_ES
dc.description.sponsorshipThis work has been co-financed by the Ministry of Science and Innovation (ES) through the State Plan for Scientific and Technical Research and Innovation 2021-23 under the project MAPSIA [TED2021-129749B-I00]. Also, by the Horizon Europe Research and Innovation Framework program of the European Union under the project LIAISON [101103698].es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Groupes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceScientific Reports, 2024, 14, 28904es_ES
dc.subject.otherConditional generative modeles_ES
dc.subject.otherMinor asphalt defect recognitiones_ES
dc.subject.otherData augmentationes_ES
dc.subject.otherObject detectiones_ES
dc.subject.otherRoad maintenancees_ES
dc.titleLeveraging a deep learning generative model to enhance recognition of minor asphalt defectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1038/s41598-024-80199-3es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101103698/EU/Lowering transport envIronmentAl Impact along the whole life cycle of the future tranSpOrt iNfrastructure/LIAISON/es_ES
dc.identifier.DOI10.1038/s41598-024-80199-3
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International