Mostrar el registro sencillo

dc.contributor.authorNavarro Tumar, David 
dc.contributor.authorGarcía Merino, Belén 
dc.contributor.authorGonzález Fernández, Cristina 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.authorSan Román San Emeterio, María Fresnedo 
dc.contributor.authorBringas Elizalde, Eugenio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-11-25T16:51:53Z
dc.date.available2024-11-25T16:51:53Z
dc.date.issued2024-11
dc.identifier.issn1424-8220
dc.identifier.otherPID2020-115409RB-I00es_ES
dc.identifier.otherPDC2021-120786-I00es_ES
dc.identifier.otherTED2021-129874B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34510
dc.description.abstractThe alarming rise in chronic diseases worldwide highlights the urgent need to overcome the limitations of conventional drug delivery systems. In this context, osmotic pumps are able to release drugs by differential osmotic pressure, achieving a controlled rate independent of physiological factors and reducing the dosing frequency. As osmotic pumps are based on the phenomenon of osmosis, the choice of high osmolality draw solutions (DSs) is a critical factor in the successful delivery of the target drug. Therefore, one alternative that has received particular attention is the formulation of DSs with magnetic nanoparticles (MNPs) due to their easy recovery, negligible reverse solute flux (RSF), and their possible tailor-made functionalization to generate high osmotic gradients. In this work, the possible integration of DSs formulated with MNPs in controlled drug delivery systems is discussed for the first time. In particular, the main potential advantages that these novel medical devices could offer, including improved scalability, regeneration, reliability, and enhanced drug delivery performance, are provided and discussed. Thus, the results of this review may demonstrate the potential of MNPs as osmotic agents, which could be useful for advancing the design of osmotic pump-based drug delivery systems.es_ES
dc.description.sponsorshipThis research was developed in the framework of the projects PID2020-115409RB-I00 financed by MICIU/AEI/10.13039/501100011033 and PDC2021-120786-I00 and TED2021-129874B-I00 financed by MICIU/AEI/10.13039/501100011033 and by the European Union Next Generation EU/PRTR. David Navarro-Tumar is grateful for the Concepción Arenal predoctoral contract UC-23-28 from the University of Cantabria. Belén García-Merino would also like to express her gratitude to the Spanish Ministry of Science, Innovation, and Universities for the FPI predoctoral grant PRE2019-089339 funded by MICIU/AEI/10.13039/501100011033 and by “ESF Investing in your future”. Cristina González-Fernández also thanks the Spanish Ministry of Universities for the Margarita Salas postdoctoral fellowship (grants for the requalification of the Spanish university system for 2021–2023, University of Cantabria), funded by the European Union–NextGenerationEU.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSensors, 2024, 24(21), 7042es_ES
dc.subject.otherOsmotic pumpses_ES
dc.subject.otherDrug deliveryes_ES
dc.subject.otherMagnetic nanoparticleses_ES
dc.subject.otherForward osmosises_ES
dc.subject.otherMedical deviceses_ES
dc.subject.otherDraw solutionses_ES
dc.subject.otherOsmotic pressurees_ES
dc.titleNovel applications in controlled drug delivery systems by integrating osmotic pumps and magnetic nanoparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115409RB-I00/ES/TECNOLOGIAS DE RECUPERACION DE MATERIAS PRIMAS CRITICAS DE CORRIENTES RESIDUALES EN EL MARCO DE LA ECONOMIA CIRCULAR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-120786-I00/ES/APROVECHAMIENTO ENERGETICO DEL GRADIENTE SALINO (EGS). PRUEBA DE CONCEPTO PARA LA INNOVACION Y TRANSFERENCIA DE LA ELECTRODIALISIS REVERSA (EDR) COMO TECNOLOGIA SOSTENIBLE/es_ES
dc.identifier.DOI10.3390/s24217042
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.