• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería Eléctrica y Energética (DIEE)
    • D19 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería Eléctrica y Energética (DIEE)
    • D19 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of a decision tree to define transformer oil contamination from on-load tap-changer gases to ensure power quality in the grid

    Ver/Abrir
    UseDecisionTree.pdf (1.282Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/34454
    DOI: 10.52152/4014
    ISSN: 2172-038X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Bustamante Sánchez, SergioAutoridad Unican; Martínez Lastra, José Luis; Mañana Canteli, MarioAutoridad Unican; Arroyo Gutiérrez, AlbertoAutoridad Unican
    Fecha
    2024-09
    Derechos
    © The European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ)
    Publicado en
    Renewable Energy & Power Quality Journal (RE&PQJ), 2024, 22(4), 119-124
    22nd International Conference on Renewable Energies and Power Quality (ICREPQ), Bilbao, 2024
    Editorial
    The European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ)
    Palabras clave
    Communicating OLTC
    Dissolved gas analysis
    Maintenance management
    Oil insulation
    Power transformer
    Resumen/Abstract
    Power transformers are one of the most important and critical assets in the electricity distribution and transmission network. Power quality (PQ) can be disturbed when a power transformer is brought into or out of service, so it is very important to be sure of the reason for this action. Dissolved gas analysis (DGA) in oil can be used to diagnose the condition of transformer insulation. There may be situations where the DGA results indicate the presence of a serious fault which would lead to the transformer being taken out of service, when in fact the high gas concentrations are due to the leakage into the main oil tank of gases generated in the on-load tap-changer (OLTC) during normal operation. In previous work, using machine learning techniques and a distribution system operator's DGA database, a decision tree (DT) was developed to identify oil contamination from OLTC gases. In this work, the developed DT is applied to a new DGA database to identify contaminated transformers and test its accuracy. A total of 1161 DGA results from 95 transformers with OLTC were used, giving an initial DT accuracy of 83.13% when all samples were analysed and 85.26% when the last DGA result from each transformer was used.
    Colecciones a las que pertenece
    • D19 Artículos [94]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España