Mostrar el registro sencillo

dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorPérez Blanco, David José
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorPantaleón Prieto, Carlos J.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-09-26T12:51:02Z
dc.date.available2013-09-26T12:51:02Z
dc.date.issued2003-09
dc.identifier.urihttp://hdl.handle.net/10902/3444
dc.description.abstractThis paper presents an efficient algorithm for computing the maximum a posteriori (MAP) estimate of a Bernouilli- Gaussian sequence distorted by a linear filter and corrupted by noise. The computational effort for the MAP estimator increases exponentially with the number of samples and is generally unfeasible. The approach used by Kormylo and Mendel in their pioneering work on the Single Most-Likely Replacement algorithm (SMLR) has been the sub-optimal reference to evaluate the efficiency of this new estimation method in computational effort and detection probability. This algorithm reduces drastically the SMLR computational load and allows real-time processing, because only few samples of the observation data are required by employing a windowing strategy. An extensive Monte Carlo analysis, using synthetic data, has been performed to compare the behaviour of the proposed estimators.es_ES
dc.format.extent4 p.es_ES
dc.language.isospaes_ES
dc.rights© 2003 URSI Españaes_ES
dc.sourceURSI 2003, XVIII Simposium Nacional de la Unión Científica Internacional de Radio, La Coruñaes_ES
dc.titleEstimador competitivo de bajo coste computacional para deconvolución dispersaes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo