Mostrar el registro sencillo

dc.contributor.authorPereiro Estevan, Yago
dc.contributor.authorVielva Martínez, Luis Antonio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-09-26T12:46:55Z
dc.date.available2013-09-26T12:46:55Z
dc.date.issued2003-09
dc.identifier.urihttp://hdl.handle.net/10902/3439
dc.description.abstractBlind source separation consists on estimating n source signals from m measurements generated through an unknown mixing process of the sources. In the underdetermined case where we have more sources than measurements, we divide the problem into two stages: estimation of the mixing matrix and inversion of the linear problem. This paper deals with the first stage. It is well known that when the sparsity of the sources premise is true, measurements tend to align with the columns of the mixing matrix, so the problem can be formulated as estimating the peaks of multidimensional probability density functions (PDF). In this paper we analyze two different techniques to estimate this peaks: one is to convert the multidimensional PDF into the power spectral density (PSD) of multiple complex sinusoidal signals and use different multidimensional espectral estimation techniques to detect the peaks. The other is to convert the (m − 1)- multidimensional PDF to m − 1 unidimensional projections and estimate the peaks of these.es_ES
dc.format.extent4 p.es_ES
dc.language.isospaes_ES
dc.rights© 2003 URSI Españaes_ES
dc.sourceURSI 2003, XVIII Simposium Nacional de la Unión Científica Internacional de Radio, La Coruñaes_ES
dc.titleEstimación de la matriz de mezclas en separación ciega de fuentes indeterminada con un número arbitrario de fuenteses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo