Mostrar el registro sencillo

dc.contributor.authorDintén Herrero, Ricardo 
dc.contributor.authorZorrilla Pantaleón, Marta E. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-11-04T18:08:34Z
dc.date.available2024-11-04T18:08:34Z
dc.date.issued2024-09
dc.identifier.issn2078-2489
dc.identifier.otherPID2021-124502OB-C42es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34395
dc.description.abstractThis paper presents a comparative analysis of deep learning techniques for anomaly detection and failure prediction. We explore various deep learning architectures on an IoT dataset, including recurrent neural networks (RNNs, LSTMs and GRUs), convolutional neural networks (CNNs) and transformers, to assess their effectiveness in anomaly detection and failure prediction. It was found that the hybrid transformer-GRU configuration delivers the highest accuracy, albeit at the cost of requiring the longest computational time for training. Furthermore, we employ explainability techniques to elucidate the decision-making processes of these black box models and evaluate their behaviour. By analysing the inner workings of the models, we aim at providing insights into the factors influencing failure predictions. Through comprehensive experimentation and analysis on sensor data collected from a water pump, this study contributes to the understanding of deep learning methodologies for anomaly detection and failure prediction and underscores the importance of model interpretability in critical applications such as prognostics and health management. Additionally, we specify the architecture for deploying these models in a real environment using the RAI4.0 metamodel, meant for designing, configuring and automatically deploying distributed stream-based industrial applications. Our findings will offer valuable guidance for practitioners seeking to deploy deep learning techniques effectively in predictive maintenance systems, facilitating informed decision-making and enhancing reliability and efficiency in industrial operations.es_ES
dc.description.sponsorshipFunded by the Spanish Government and FEDER funds (AEI/FEDER, UE) under grant PID2021-124502OB-C42 (PRESECREL) and the predoctoral program "Concepción Arenal del Programa de Personal Investigador en formación Predoctoral" funded by Universidad de Cantabria and Cantabria's Government (BOC 18-10-2021).es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceInformation 2024, 15(9), 557es_ES
dc.subject.otherPredictive maintenancees_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherExplainabilityes_ES
dc.subject.otherModel-based deploymentes_ES
dc.titleDesign, building and deployment of smart applications for anomaly detection and failure prediction in industrial use caseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/info15090557es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.identifier.DOI10.3390/info15090557
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).