dc.contributor.author | Santamaría Caballero, Luis Ignacio | |
dc.contributor.author | Gutiérrez González, David | |
dc.contributor.author | Blanco Ibáñez, Raquel | |
dc.contributor.author | Cuesta Ruiz, Blanca | |
dc.contributor.author | Jiménez, Antonio | |
dc.contributor.author | Carpizo Alfayate, Rosario | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2013-09-26T12:46:11Z | |
dc.date.available | 2013-09-26T12:46:11Z | |
dc.date.issued | 2003-09 | |
dc.identifier.uri | http://hdl.handle.net/10902/3438 | |
dc.description.abstract | The study and analysis of polysomnographic recordings
is one of the main tools used for the diagnosis and treatment
of sleep illnesses and disorders. One step of that analysis is the
manual scoring by a specialist of different events that happen
while the patient sleeps. The arousals, which are defined as abrupt
changes in the EEG frequency, are one of those events. In this
paper we describe a procedure for the automatic detection and
scoring of arousals, which consists of three stages: feature extraction,
detection and post-processing. In particular, we compare
three different detectors: Bayesian, multilayer perceptron (MLP)
and support vector machines (SVM). The performance of these
detectors is evaluated using polysomnographic recordings taken
from several patients. | es_ES |
dc.format.extent | 4 p. | es_ES |
dc.language.iso | spa | es_ES |
dc.rights | © 2003 URSI España | es_ES |
dc.source | URSI 2003, XVIII Simposium Nacional de la Unión Científica Internacional de Radio, La Coruña | es_ES |
dc.title | Detección automática de arousals en registros polisomnográficos | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.type.version | publishedVersion | es_ES |