Mostrar el registro sencillo

dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorGutiérrez González, David
dc.contributor.authorBlanco Ibáñez, Raquel
dc.contributor.authorCuesta Ruiz, Blanca
dc.contributor.authorJiménez, Antonio
dc.contributor.authorCarpizo Alfayate, Rosario
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-09-26T12:46:11Z
dc.date.available2013-09-26T12:46:11Z
dc.date.issued2003-09
dc.identifier.urihttp://hdl.handle.net/10902/3438
dc.description.abstractThe study and analysis of polysomnographic recordings is one of the main tools used for the diagnosis and treatment of sleep illnesses and disorders. One step of that analysis is the manual scoring by a specialist of different events that happen while the patient sleeps. The arousals, which are defined as abrupt changes in the EEG frequency, are one of those events. In this paper we describe a procedure for the automatic detection and scoring of arousals, which consists of three stages: feature extraction, detection and post-processing. In particular, we compare three different detectors: Bayesian, multilayer perceptron (MLP) and support vector machines (SVM). The performance of these detectors is evaluated using polysomnographic recordings taken from several patients.es_ES
dc.format.extent4 p.es_ES
dc.language.isospaes_ES
dc.rights© 2003 URSI Españaes_ES
dc.sourceURSI 2003, XVIII Simposium Nacional de la Unión Científica Internacional de Radio, La Coruñaes_ES
dc.titleDetección automática de arousals en registros polisomnográficoses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo