Mostrar el registro sencillo

dc.contributor.authorNorman Ayllón, Eric Alfredo 
dc.contributor.authorMaestre Muñoz, Víctor Manuel 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-10-02T16:21:11Z
dc.date.available2024-10-02T16:21:11Z
dc.date.issued2024-09
dc.identifier.issn1364-0321
dc.identifier.otherPID2021-123120OB-I00es_ES
dc.identifier.otherTED2021-129951B-C21es_ES
dc.identifier.otherPLEC2021-007718es_ES
dc.identifier.urihttps://hdl.handle.net/10902/34035
dc.description.abstractWith renewable energy sources projected to become the dominant source of electricity, hydrogen has emerged as a crucial energy carrier to mitigate their intermittency issues. Water electrolysis is the most developed alternative to generate green hydrogen so far. However, in the past two decades steam electrolysis has attracted increasing interest and aims to become a key player in the portfolio of electrolytic hydrogen. In practice, steam electrolysis follows two distinct operational approaches: Solid Oxide Electrolysis Cell (SOEC) and Proton Exchange Membrane (PEM) at high temperature. For both technologies, this work analyses critical cell components outlining material characteristics and degradation issues. The influence of operational conditions on the performance and cell durability of both technologies is thoroughly reviewed. The analytical comparison of the two electrolysis alternatives underscores their distinct advantages and drawbacks, highlighting their niche of applications: SOECs thrive in high temperature industries like steel production and nuclear power plants whereas PEM steam electrolysis suits lower temperature applications such as textile and paper. Being PEM steam electrolysis less explored, this work ends up by suggesting research lines in the domain of i) cell components (membranes, catalysts and gas diffusion layers) to optimize and scale the technology, ii) integration strategies with renewable energies and iii) use of seawater as feedstock for green hydrogen production.es_ES
dc.description.sponsorshipThe research is currently receiving support from various sources. The project PID2021-123120OB-I00 and TED2021-129951B–C21, funded by the Spanish Ministry of Science, Innovation and Universities, are among the primary contributors. Additionally, the authors acknowledge the financial assistance provided by projects PLEC2021-007718 and the “Complementary Plan for Energy and Renewable Hydrogen” PRTR-C17.I1, financed by MICIU/AEI/10.13039/501100011033, the Regional Government of Cantabria, and the European Union Next GenerationEU/RTRP. Lastly, gratitude is extended to the Interreg Atlantic Area program for its support through the project “Plastic circularity through an efficient detection, collection, and valorization into Hydrogen and value-added products EAPA_0018/2022."es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Limitedes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRenewable and Sustainable Energy Reviews, 2024, 202, 114725es_ES
dc.subject.otherSteam electrolysises_ES
dc.subject.otherSOECes_ES
dc.subject.otherPEMes_ES
dc.subject.otherHydrogen productiones_ES
dc.subject.otherIndustrial integrationes_ES
dc.titleSteam electrolysis for green hydrogen generation. State of the art and research perspectivees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.rser.2024.114725es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/INTERREG ATLANTIC AREA/EAPA_0018%2F2022/EU/Plastic circularity through an efficient detection, collection, and valorization into Hydrogen and value-added products/PLAST4H2/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123120OB-I00/ES/CIRCULARIDAD DEL HIDROGENO: RECUPERACION DE CORRIENTES DE GASES RESIDUALES PARA SU TRANSFORMACION EN ENERGIA ELECTRICA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129951B-C21/ES/PILOTO DEMOSTRADOR DE UN SISTEMA HÍBRIDO SOLAR FOTOVOLTÁICA-HIDRÓGENO PARA EL ABASTECIMIENTO ENERGÉTICO EN EL AMBITO RESIDENCIAL/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007718/ES/ANÁLISIS DE LA EFICIENCIA EN LA CONVERSIÓN DE ENERGÍA SOLAR EN HIDRÓGENO A PARTIR DE AGUA DE MAR/es_ES
dc.identifier.DOI10.1016/j.rser.2024.114725
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International