Mostrar el registro sencillo

dc.contributor.authorGomez, Iosu
dc.contributor.authorRivas Concepción, Juan María 
dc.contributor.authorGutiérrez García, José Javier 
dc.contributor.authorParra, Jorge
dc.contributor.authorDíaz de Cerio, Unai
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-09-23T12:46:01Z
dc.date.available2024-09-23T12:46:01Z
dc.date.issued2024-03-15
dc.identifier.otherPID2021-124502OB-C42es_ES
dc.identifier.otherPID2021-124502OB-C44es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33903
dc.description.abstractAlthough the computational power and efficiency of GPUs would clearly benefit emerging real-time applications such as smart mobility, the adoption of such accelerators is being hindered by the poorly documented nature of their internal scheduling mechanisms. There is presently an intense research effort to propose solutions to enable the safe usage of GPUs in real-time applications [1] [2], although their applicability remains a challenge. In this extended abstract we present our methodology to safely incorporate GPUs into real-time systems. We propose a comprehensive framework that builds upon existing and validated tools and techniques, based on three main aspects: (1) an extension of an industry relevant meta-model, called MAST-2, to support GPUs, (2) leveraging time partitioning to control the access to the GPUs, which enables the application of existing WCRT (Worst-Case Response Time) analysis techniques, and (3) an optimization framework that takes advantage of the previous metamodel and analysis, to construct optimized time partitions.es_ES
dc.description.sponsorshipThis work was partially supported by MCIN/ AEI /10.13039/501100011033/ FEDER “Una manera de hacer Europa” under grants PID2021-124502OB-C42 and PID2021-124502OB-C44 (PRESECREL).es_ES
dc.format.extent3 p.es_ES
dc.language.isoenges_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceThe Brussels wOrkshop on real-time Scheduling and Operating system syNergies (BOSON), Brussels (Belgium)es_ES
dc.subject.otherReal-timees_ES
dc.subject.otherGPUes_ES
dc.subject.otherModelinges_ES
dc.subject.otherAnalysises_ES
dc.subject.otherOptimizationes_ES
dc.titleTowards a general framework to model, analyze and optimize real-time systems with GPUses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C44/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.type.versionsubmittedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

http://creativecommons.org/licenses/by-nc-nd/4.0/Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/