Mostrar el registro sencillo

dc.contributor.authorCano Ortiz, Saúl 
dc.contributor.authorSainz Ortiz, Eugenio 
dc.contributor.authorLloret Iglesias, Lara
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorCastro Fresno, Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-09-20T12:42:43Z
dc.date.available2024-09-20T12:42:43Z
dc.date.issued2024-09
dc.identifier.issn2590-1230
dc.identifier.otherTED2021-129749B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33881
dc.description.abstractComputer-aided deep learning has significantly advanced road crack segmentation. However, supervised models face challenges due to limited annotated images. There is also a lack of emphasis on deriving pavement condition indices from predicted masks. This article introduces a novel semantic diffusion synthesis model that creates synthetic crack images from segmentation masks. The model is optimized in terms of architectural complexity, noise schedules, and condition scaling. The optimal architecture outperforms state-of-the-art semantic synthesis models across multiple benchmark datasets, demonstrating superior image quality assessment metrics. The synthetic frames augment these datasets, resulting in segmentation models with significantly improved efficiency. This approach enhances results without extensive data collection or annotation, addressing a key challenge in engineering. Finally, a refined pavement condition index has been developed for automated end-to-end defect detection systems, promoting more effective maintenance planning.es_ES
dc.description.sponsorshipThis work has been co-financed by the Ministry of Science and Innovation (ES) through the State Plan for Scientific and Technical Research and Innovation 2021-23 under the project MAPSIA [TED2021-129749B–I00]. Also, by the Horizon Europe Research and Innovation Framework program of the European Union under the project LIAISON [101103698].es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Authors.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceResults in Engineering, 2024, 23, 102745es_ES
dc.subject.otherPavement crack segmentationes_ES
dc.subject.otherGenerative artificial intelligencees_ES
dc.subject.otherSemantic diffusion synthesises_ES
dc.subject.otherRoad maintenancees_ES
dc.subject.otherDeep learninges_ES
dc.titleEnhancing pavement crack segmentation via semantic diffusion synthesis model for strategic road assessmentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.rineng.2024.102745es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101103698/EU/Lowering transport envIronmentAl Impact along the whole life cycle of the future tranSpOrt iNfrastructure/LIAISON/es_ES
dc.identifier.DOI10.1016/j.rineng.2024.102745
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Authors.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Authors.