Enhancing pavement crack segmentation via semantic diffusion synthesis model for strategic road assessment
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Cano Ortiz, Saúl



Fecha
2024-09Derechos
© 2024 The Authors.
Publicado en
Results in Engineering, 2024, 23, 102745
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Pavement crack segmentation
Generative artificial intelligence
Semantic diffusion synthesis
Road maintenance
Deep learning
Resumen/Abstract
Computer-aided deep learning has significantly advanced road crack segmentation. However, supervised models face challenges due to limited annotated images. There is also a lack of emphasis on deriving pavement condition indices from predicted masks. This article introduces a novel semantic diffusion synthesis model that creates synthetic crack images from segmentation masks. The model is optimized in terms of architectural complexity, noise schedules, and condition scaling. The optimal architecture outperforms state-of-the-art semantic synthesis models across multiple benchmark datasets, demonstrating superior image quality assessment metrics. The synthetic frames augment these datasets, resulting in segmentation models with significantly improved efficiency. This approach enhances results without extensive data collection or annotation, addressing a key challenge in engineering. Finally, a refined pavement condition index has been developed for automated end-to-end defect detection systems, promoting more effective maintenance planning.
Colecciones a las que pertenece
- D09 Artículos [452]
- D09 Proyectos de investigación [220]
- D15 Artículos [848]
- D15 Proyectos de Investigación [161]
- D52 Artículos [1339]
- D52 Proyectos de investigación [426]