Passive detection of a random signal common to multi-sensor reference and surveillance arrays
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2024-02-16Derechos
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publicado en
IEEE Transactions on Vehicular Technology, 2024, 73(7), 10106-10117
Editorial
Institute of Electrical and Electronics Engineers, Inc.
Enlace a la publicación
Palabras clave
Coherence
Generalized likelihood ratio (GLR)
Hypothesis test
Multi-sensor array
Passive radar
Resumen/Abstract
This paper addresses the passive detection of a common rank-one subspace signal received in two multi-sensor arrays. We consider the case of a one-antenna transmitter sending a common Gaussian signal, independent Gaussian noises with arbitrary spatial covariance, and known channel subspaces. The detector derived in this paper is a generalized likelihood ratio (GLR) test. For all but one of the unknown parameters, it is possible to find closed-form maximum likelihood (ML) estimator functions. We can further compress the likelihood to only an unknown vector whose ML estimate requires maximizing a product of ratios in quadratic forms, which is carried out using a trust-region algorithm. We propose two approximations of the GLR that do not require any numerical optimization: one based on a sample-based estimator of the unknown parameter whose ML estimate cannot be obtained in closed-form, and one derived under low-SNR conditions. Notably, all the detectors are scale-invariant, and the approximations are functions of beamformed data. However, they are not GLRTs for data that has been pre-processed with a beamformer, a point that is elaborated in the paper. These detectors outperform previously published correlation detectors on simulated data, in many cases quite significantly. Moreover, performance results quantify the performance gains over detectors that assume only the dimension of the subspace to be.
Colecciones a las que pertenece
- D12 Artículos [360]
- D12 Proyectos de Investigación [517]