Mostrar el registro sencillo

dc.contributor.authorD´Angelo, Carlo Sebastiano
dc.contributor.authorCobo Gutiérrez, Selene 
dc.contributor.authorTulus, Victor
dc.contributor.authorNabera, Abhinandan
dc.contributor.authorMartín, Antonio José
dc.contributor.authorPérez Ramírez, Javier
dc.contributor.authorGuillén Gosálbez, Gonzalo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-09-12T17:05:08Z
dc.date.available2024-09-12T17:05:08Z
dc.date.issued2021-07-26
dc.identifier.issn2168-0485
dc.identifier.urihttps://hdl.handle.net/10902/33795
dc.description.abstractAt present, the synthesis of ammonia through the Haber–Bosch (HB) process accounts for 1.2% of the global carbon emissions, representing roughly one-fourth of the global fossil consumption from the chemical industry, which creates a pressing need for alternative low-carbon synthesis routes. Analyzing seven essential planetary boundaries (PBs) for the safe operation of our planet, we find that the standard HB process is unsustainable as it vastly transgresses the climate change PB. In order to identify more responsible strategies from this integrated perspective, we assess the absolute sustainability level of 34 alternative routes where hydrogen (H2) is supplied by steam methane reforming with carbon capture and storage, biomass gasification, or water electrolysis powered by various energy sources. We found that some of these scenarios could substantially reduce the global impact of fossil HB, yet alleviating the impact on climate change could critically exacerbate the impacts on other Earth-system processes. Furthermore, we identify that reducing the cost of electrolytic H2 is the main avenue toward the economic appeal of the most sustainable routes. Our work highlights the need to embrace global impacts beyond climate change in the assessment of decarbonization routes of fossil chemicals. This approach enabled us to identify more suitable alternatives and associated challenges toward environmental and economically attractive ammonia synthesis.es_ES
dc.description.sponsorshipThis publication was created as part of NCCR Catalysis, aNational Centre of Competence in Research funded by theSwiss National Science Foundation.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceACS Sustainable Chemistry and Engineering, 2021, 9(29), 9740-9749es_ES
dc.subject.otherAmmonia synthesises_ES
dc.subject.otherHaber−Bosch processes_ES
dc.subject.otherLCAes_ES
dc.subject.otherPlanetary boundarieses_ES
dc.subject.otherRenewableses_ES
dc.subject.otherTechno-economic analysises_ES
dc.titlePlanetary boundaries analysis of low-carbon ammonia production routeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acssuschemeng.1c01915es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acssuschemeng.1c01915
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como © ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 International