Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/33783ISSN: 1539-3755
ISSN: 1550-2376
ISSN: 2470-0045
ISSN: 2470-0053
Registro completo
Mostrar el registro completo DCAutoría
Rodríguez Fernández, Enrique

Fecha
2024-08-02Derechos
© American Physical Society
Publicado en
Physical Review E, 2024, 110(2), 024104
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
We study numerically a family of surface growth models that are known to be in the universality class of the Kardar-Parisi-Zhang equation when driven by uncorrelated noise. We find that, in the presence of noise with power-law temporal correlations with exponent θ, these models exhibit critical exponents that differ both quantitatively and qualitatively from model to model. The existence of a threshold value for θ below which the uncorrelated fixed point is dominant occurs for some models but not for others. In some models the dynamic exponent z(θ) is a smooth decreasing function, while it has a maximum in other cases. Despite all models sharing the same symmetries, critical exponents turn out to be strongly model dependent. Our results clearly show the fragility of the universality class concept in the presence of long-range temporally correlated noise.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]