dc.contributor.author | Armentano, Diego | |
dc.contributor.author | Beltrán Álvarez, Carlos | |
dc.contributor.author | Shub, Michael | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2013-09-23T07:35:33Z | |
dc.date.available | 2013-09-23T07:35:33Z | |
dc.date.issued | 2011-06 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.issn | 1088-6850 | |
dc.identifier.uri | http://hdl.handle.net/10902/3365 | |
dc.description.abstract | We prove that points in the sphere associated with roots of random polynomials via the stereographic projection are surprisingly well-suited with respect to the minimal logarithmic energy on the sphere. That is, roots of random polynomials provide a fairly good approximation to elliptic Fekete points. | es_ES |
dc.format.extent | 11 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Mathematical Society | es_ES |
dc.rights | © American Mathematical Society, First published in Transactions of the American Mathematical Society in vol. 363, num. 6, published by the American Mathematical Society | es_ES |
dc.source | Transactions of the American Mathematical Society, vol. 363, num, 6, p. 2955-2965 (2011) | es_ES |
dc.subject.other | Logarithmic energy | es_ES |
dc.subject.other | Elliptic Fekete points | es_ES |
dc.subject.other | Random polynomials | es_ES |
dc.title | Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | http://dx.doi.org/10.1090/S0002-9947-2011-05243-8 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1090/S0002-9947-2011-05243-8 | |
dc.type.version | publishedVersion | es_ES |