Mostrar el registro sencillo

dc.contributor.authorLin, Linhan
dc.contributor.authorWang, Mingsong
dc.contributor.authorPeng, Xiaolei
dc.contributor.authorLissek, Emanuel N.
dc.contributor.authorMao, Zhangming
dc.contributor.authorScarabelli, Leonardo 
dc.contributor.authorAdkins, Emily
dc.contributor.authorCoskun, Sahin
dc.contributor.authorUnalan, Husnu Emrah
dc.contributor.authorKorgel, Brian A.
dc.contributor.authorLiz Marzán, Luis Manuel
dc.contributor.authorFlorin, Ernst-Ludwig
dc.contributor.authorZheng, Yuebing
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-08-29T11:29:49Z
dc.date.available2024-08-29T11:29:49Z
dc.date.issued2018-03
dc.identifier.issn1749-4885
dc.identifier.issn1749-4893
dc.identifier.urihttps://hdl.handle.net/10902/33642
dc.description.abstractOptical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.es_ES
dc.description.sponsorshipThe authors acknowledge the financial supports of the Beckman Young Investigator Program, the Army Research Office (W911NF-17-1-0561), the National Aeronautics and Space Administration Early Career Faculty Award (80NSSC17K0520), and the National Institute of General Medical Sciences of the National Institutes of Health (DP2GM128446). We also thank the Texas Advanced Computing Centre at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http:// www.tacc.utexas.edu.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights© The authorses_ES
dc.sourceNature Photonics, 2018, 12(4), 195-201es_ES
dc.titleOpto-thermoelectric nanotweezerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1038/s41566-018-0134-3es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1038/s41566-018-0134-3
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo