Mostrar el registro sencillo

dc.contributor.authorHamon, Cyrille
dc.contributor.authorNovikov, Sergey M.
dc.contributor.authorScarabelli, Leonardo 
dc.contributor.authorSolís, Diego M.
dc.contributor.authorAltantzis, Thomas
dc.contributor.authorBals, Sara
dc.contributor.authorTaboada, José M.
dc.contributor.authorObelleiro, Fernando
dc.contributor.authorLiz Marzán, Luis Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-08-29T09:46:28Z
dc.date.available2024-08-29T09:46:28Z
dc.date.issued2015-10-21
dc.identifier.issn2330-4022
dc.identifier.otherMAT2013-46101-Res_ES
dc.identifier.otherMAT2014-58201-C2-1-Res_ES
dc.identifier.otherMAT2014-58201-C2-2-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/33625
dc.description.abstractGold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels, confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers) and the enhancement factor has been proposed, no systematic study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.es_ES
dc.description.sponsorshipThe authors are thankful to Dr. Luis Yate for assistance with sample preparation. This work was supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo and ERC Starting Grant #335078 Colouratom) and the Spanish Ministerio de Economia y Competitividad ́ (MAT2013-46101-R). D.M.S., J.M.T., and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Economia y ́ Competitividad (MAT2014-58201-C2-1-R, MAT2014-58201- C2-2-R, Project TACTICA), from the ERDF and the Galician Regional Government under Projects CN2012/279 and CN2012/260 (AtlantTIC) and the Plan I2C (2011−2015), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura Project IB13185).es_ES
dc.format.extent7 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS under an ACS AuthorChoice Licensees_ES
dc.sourceACS Photonics, 2015, 2(10), 1482-1488es_ES
dc.subject.otherGold nanorodses_ES
dc.subject.otherSupercrystales_ES
dc.subject.otherSuperlatticees_ES
dc.subject.otherMethod of momentses_ES
dc.subject.otherMLFMAes_ES
dc.subject.otherSERSes_ES
dc.subject.otherSurface enhanced Raman scatteringes_ES
dc.subject.otherElectron tomographyes_ES
dc.titleCollective plasmonic properties in few-layer gold nanorod supercrystalses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acsphotonics.5b00369es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MAT2013-46101-R/ES/SINTESIS Y ENSAMBLAJE REPRODUCIBLES DE NANOESTRUCTURAS PLASMONICAS PARA TERANOSTICA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MAT2014-58201-C2-1-R/ES/MODELADO AVANZADO DE NANOESTRUCTURAS PLASMONICAS PARA APLICACIONES BIOMEDICAS Y DE IMAGEN/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MAT2014-58201-C2-2-R/ES/MODELADO AVANZADO DE NANOESTRUCTURAS PLASMONICAS PARA APLICACIONES BIOMEDICAS Y DE IMAGEN/es_ES
dc.identifier.DOI10.1021/acsphotonics.5b00369
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo