Mostrar el registro sencillo

dc.contributor.authorConti, Ylli
dc.contributor.authorPassarelli, Nicolas
dc.contributor.authorMendoza-Carreño, Jose
dc.contributor.authorScarabelli, Leonardo 
dc.contributor.authorMihi, Agustin
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-08-28T07:50:01Z
dc.date.available2024-08-28T07:50:01Z
dc.date.issued2023-12-04
dc.identifier.issn2195-1071
dc.identifier.otherPDC2021-121475- I00es_ES
dc.identifier.otherPID2019-106860GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33601
dc.description.abstractThe characteristic narrow spectral features of surface lattice resonances emerge as great candidates for the rational design of optical nanocavities targeting enhanced light-matter interaction, ultrasensitive detection, or efficient light-energy conversion. Traditional fabrication of metal arrays involves thermal evaporation and annealing steps, limiting scalability and adaptability. In contrast, template-assisted self-assembly provides a high-throughput all-around approach for implementing colloidal plasmonic metasurfaces on a variety of different materials. Here, the use of pre-synthesized silver nanoparticles is designed and tested for the construction of versatile lasing architectures. Plasmonic arrays are prepared directly on top of the gain media (a photoresist thin film doped with Rhodamine B), creating optical nanocavities with quality factors as high as 85. The proposed architecture circumvents the need for an index-matching superstrate to promote the generation of collective resonances, leaving the plasmonic surface accessible for post-assembly modification. Additionally, the angular dispersion of the metasurfaces is used to modify the angle of the lasing emission, achieving both normal and off-normal lasing upon modification of the lattice parameter of the array. The results demonstrate how state-of-the-art colloidal self-assembly techniques offer a scalable and versatile alternative for the fabrication of plasmonic and photonic devices targeting advanced and non-linear optical phenomena.es_ES
dc.description.sponsorshipThe authors would like to thank Dr. Martí Gibert Roca for his help in the realization of the optical setup and the dedicated software, as well as Dr. Sebastián Reparaz and Kai Xu for their assistance in the lifetime measurements. Y.C. acknowledges the auspices of the UAB material science doctoral program. This project received funding from the Spanish Ministerio de Ciencia e Innovación through grants, PDC2021-121475-I00/AEI/10.13039/501100011033 by the “European Union” NextGenera-tionEU/PRTR, PID2019-106860GB-I00/AEI/10.13039/501100011033 and FUNFUTURE (CEX2019-000917-S), in the framework of the Spanish Severo Ochoa Centre of Excellence program. L.S. and Y.C.’s research is supported by the 2020 Post-doctoral Junior Leader-Incoming Fellowship by “La Caixa” Foundation (ID 100010434, fellowship codeLCF/BQ/PI20/11760028), and from a 2022 Leonardo Grant for Re-searchers and Cultural Creators, BBVA Foundation.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley and Sons Inc.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvanced Optical Materials, 2023, 11(23), 2300983es_ES
dc.subject.otherLasinges_ES
dc.subject.otherLattice plasmon resonancees_ES
dc.subject.otherPlasmonic metasurfaceses_ES
dc.subject.otherSilver nanoparticleses_ES
dc.subject.otherStimulated emissiones_ES
dc.subject.otherTemplate-assisted self-assemblyes_ES
dc.titleColloidal silver nanoparticle plasmonic arrays for versatile lasing architectures via template-assisted self-assemblyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/adom.202300983es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121475-I00/ES/SUPERCRISTALES PLASMONICOS PARA LA AMPLIFICACION DE ESPECTROSCOPIAS OPTICAS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106860GB-I00/ES/ARQUITECTURAS FOTONICAS BASADAS EN DIELECTRICOS DE ALTO INDICE MEDIANTE TECNICAS DE FABRICACION NO CONVENCIONALES/es_ES
dc.identifier.DOI10.1002/adom.202300983
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International