Mostrar el registro sencillo

dc.contributor.authorAbarca González, José Antonio
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-08-28T07:21:58Z
dc.date.available2024-08-28T07:21:58Z
dc.date.issued2024-08
dc.identifier.issn2212-9820
dc.identifier.issn2212-9839
dc.identifier.otherPID2020- 112845RB-I00es_ES
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherPLEC2022-009398es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33595
dc.description.abstractThe gas-phase CO2 electroreduction to formate represents one of the most promising CO2 conversion processes due to its scalability, as the product concentration surpasses 30 % wt. However, the use of alkaline media anolytes, intended to improve the efficiency and selectivity of formate production, causes the carbonate and bicarbonate salts to precipitate over the Gas Diffusion Electrode (GDE). This precipitation clogs the porous structure, leading to a rapid loss of electrode stability. In this work, we address this issue by proposing the use of acid anolytes, based on K2SO4, to mitigate the precipitation of insoluble salt on the GDE structure, thereby achieving longer and more stable GDE operation times. Various anolyte concentrations and pHs are evaluated, with 0.3 M K2SO4 at pH 1, adjusted using H2SO4, providing the best compromise. This condition inhibited potassium carbonate and bicarbonate precipitation, as observed through XRD, SEM, and EDS analysis, while maintaining high CO2 electroreduction to formate performance, with a concentration of 69 g L−1, and a Faradaic Efficiency of 33 %. Furthermore, the anolyte flowrate per geometric area is optimized to maximize the system performance. At a flowrate of 0.85 mL min−1 cm−2, enhanced concentration of 88 g L−1 and a Faradaic Efficiency of 42 % are reached. Besides, long-term experiments demonstrated that GDEs used with alkaline conditions exhibit a larger deactivation constant (0.7652) compared to the GDEs used with acid anolytes (0.3891). This indicates that salt precipitation more rapidly reduces GDE performance under alkaline conditions. These results represent a promising advance in obtaining longer-lasting GDEs, which are crucial to successfully scaling up the CO2 electroreduction to formate.es_ES
dc.description.sponsorshipThe authors fully acknowledge the financial support received from the Spanish State Research Agency (AEI) through the projects PID2020-112845RB-I00, TED2021-129810B-C21, and PLEC2022-009398 (MCIN/AEI/10.13039/501100011033 and Union Europea Next Generation EU/PRTR). The present work is related to CAPTUS Project. This project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101118265”. Jose Antonio Abarca gratefully acknowledges the predoctoral research grant (FPI) PRE2021-097200es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of CO2 Utilization, 2024, 86, 102897es_ES
dc.subject.otherGas-phase CO2 electroreductiones_ES
dc.subject.otherFormatees_ES
dc.subject.otherGDE stabilityes_ES
dc.subject.otherAcid anolytees_ES
dc.subject.otherSalt precipitationes_ES
dc.titleInhibiting salt precipitation on the gas diffusion electrode surface in gas-phase CO2 electroreduction to formate by using an acidic anolytees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jcou.2024.102897es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101118265/EU/Demonstrating energy intensive industry-integrated solutions to produce liquid renewable energy carriers from CAPTUred carbon emissionS/CAPTUS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PLEC2022-009398/ES/Validación de un prototipo de planta de reciclado de CO2 en la industria textil (VALCO2-T)/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112845RB-I00/ES/ENERGIA RENOVABLE A PRODUCTOS: PRUEBA DE CONCEPTO Y ANALISIS DE SOSTENIBILIDAD/es_ES
dc.identifier.DOI10.1016/j.jcou.2024.102897
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International