Mostrar el registro sencillo

dc.contributor.authorJafari Tehrani, Amir Reza
dc.contributor.authorGonzález Carril, Víctor 
dc.contributor.authorMartín González, Laura 
dc.contributor.authorSánchez González, Luis 
dc.contributor.authorLanza Calderón, Jorge 
dc.contributor.authorRaza, Syed Mohsan
dc.contributor.authorAlvi, Maira
dc.contributor.authorKaewnoparat, Kanawut
dc.contributor.authorMinerva. Roberto
dc.contributor.authorCrespi, Noel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-08-26T07:49:59Z
dc.date.issued2024-07
dc.identifier.issn2542-6605
dc.identifier.issn2543-1536
dc.identifier.otherTED2021-131988B-I00
dc.identifier.urihttps://hdl.handle.net/10902/33537
dc.description.abstractIn the era of burgeoning data diversity in heterogeneous sources, unlocking valuable insights becomes pivotal. Raw data often lack context and meaning, necessitating the deployment of services that link and enhance data, thereby extracting meaningful patterns and information. For example, exploring the significance of IoT sensors in measuring air quality across cities emphasizes the potential to establish connections between air quality and associated metrics like traffic intensity and meteorological conditions. Introducing the Data Enrichment Toolchain (DET), this study underscores its role in harmonizing and curating diverse datasets. DET operates on linked-data principles and adheres to the NGSI-LD standard, enabling seamless integration and correlation analysis across disparate data domains. The research delves into the intricate relationship between traffic patterns and prevalent air pollutants, utilizing enriched datasets from European cities focusing on the smart city of Madrid as a use-case. Considering the COVID-19 pandemic?s impact on traffic flow and meteorological influences on air quality, the study examines pre-pandemic, pandemic, and post-pandemic traffic scenarios in Madrid. By leveraging DET-enhanced datasets, the investigation aims to unravel nuanced insights into the interplay between traffic, meteorological factors, and air quality, offering valuable implications for urban planning and pollution mitigation strategies.es_ES
dc.description.sponsorshipThis work has been partially supported by the project SALTED (Situation-Aware Linked heterogeneous Enriched Data) from the European Union’s Connecting Europe Facility program under the Action Number 2020-EU-IA-0274, and by means of the project THROTTLE (TrustwortHy uRban mObility daTa markeTpLacE) under Grant Agreement No. TED2021-131988B-I00 funded by MCIN/AEI/10.13039/501100011033 and the European Union Next GenerationEU/PRTR.es_ES
dc.format.extent42 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternet of Things, 2024, 26, 101232es_ES
dc.subject.otherSmart cityes_ES
dc.subject.otherCorrelation analysises_ES
dc.subject.otherData analysises_ES
dc.subject.otherData enrichment toolchaines_ES
dc.titleData enrichment toolchain: a use-case for correlation analysis of air quality, traffic, and meteorological metrics in Madrid's smart cityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.iot.2024.101232es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/CEF/2020-EU-IA-0274/EU/Situation-Aware Linked heTerogeneous Enriched Data /SALTED/es_ES
dc.identifier.DOI10.1016/j.iot.2024.101232
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license